首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3428篇
  免费   344篇
  国内免费   89篇
  2024年   4篇
  2023年   27篇
  2022年   50篇
  2021年   77篇
  2020年   81篇
  2019年   151篇
  2018年   151篇
  2017年   106篇
  2016年   117篇
  2015年   143篇
  2014年   228篇
  2013年   273篇
  2012年   191篇
  2011年   228篇
  2010年   186篇
  2009年   154篇
  2008年   175篇
  2007年   168篇
  2006年   156篇
  2005年   129篇
  2004年   132篇
  2003年   123篇
  2002年   124篇
  2001年   105篇
  2000年   60篇
  1999年   79篇
  1998年   56篇
  1997年   54篇
  1996年   64篇
  1995年   34篇
  1994年   38篇
  1993年   31篇
  1992年   28篇
  1991年   14篇
  1990年   12篇
  1989年   13篇
  1988年   17篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   3篇
  1979年   4篇
  1978年   8篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有3861条查询结果,搜索用时 125 毫秒
51.
Abstract: The neurological mouse mutant dystonia musculorum exhibits bizarre appendicular and truncal dystonia without known cerebellar histopathology. We evaluated striatal dopamine and cerebellar norepinephrine metabolism in this mutant and compared the results with those obtained in wild-type BALB/c and B6C3 controls. Tyrosine hydroxylase activity and dopamine metabolite levels (homovanillic acid and 3,4-dihydroxyphenylacetic acid) in the striatum of the mutant were similar to controls. Tyrosine hydroxylase activity and the steady-state level of 3-methoxy-4-hydroxyphenethyleneglycol, a metabolite of norepinephrine, in the cerebellum were 38% and 42-66%, respectively, greater in the mutant. However, the level of norepinephrine was similar (∼350 ng/g). Further, a Purkinje cell-specific marker, cGMP-dependent protein kinase, was unchanged in the mutant and no Purkinje cell pathology was observed with light microscopy. The lack of Purkinje cell derangement and similar levels of cerebellar norepinephrine and cGMP-dependent protein kinase activity suggest that increased norepinephrine metabolism in the cerebellum of this mutant is not a morphological response to gross target cell loss during morphogenesis. The observed changes may be a reaction to abnormal impulse traffic or altered input/output pathways to the mutant cerebellum during its development.  相似文献   
52.
Phosphoinositol kinase, the key enzyme responsible for the biosynthesis of higher inositol phosphates has been isolated from the cotyledons of mung beans germinated for 24 hr and has been resolved into two different forms, phosphoinositol kinase A and phosphoinositol kinase B. Both forms were purified to homogeneity and characterized. The Km values for ATP with phosphoinositol kinase A (1.78 × 10?4 M) and phosphoinositol kinase B (3.12 × 10 ?5 M) showed that phosphoinositol kinase B had a greater affinity for ATP. ATP could be partially replaced as phosphate donor by UTP and phosphoenolpyruvate in the case of phosphoinositol kinase A but not in the case of phosphoinositol kinase B.  相似文献   
53.
54.
The effects of transfer from low to high ligh intensity on membrane bound electrontransport reactions of Rhodospirillum rubrum were investigated. The experiments were performed with cultures which did not form bacteriochlorophyll (Bchl) for about two cell mass doublings during the initial phase of adaptation to high light intensity. Lack of Bchl synthesis causes a decrease of Bchl contents of cells and membranes. Also, the cellular amounts of photosynthetically active intracytoplasmic membranes decrease.In crude membrane fractions containing both cytoplasmic and intracytoplasmic membranes the initial activities of NADH oxidizing reactions increase only slightly (about 1.2 times) per protein, but the initial activities of succinate oxidizing reactions decrease (multiplied by a factor of 0.7). On a Bchl basis activities of NADH oxidizing reactions increase 3.4 times while activities of succinate dependent reactions increase 1.9 times. With isolated intracytoplasmic membranes activities of NADH as well as succinate dependent reactions increase to a comparable extent on a Bchl basis (about 1.8 times) and stay nearly constant on a protein basis. Cytochrome c oxidase responds like succinate dependent reactions. The data indicate that in cells growing under the conditions applied NADH oxidizing electron transport systems are incorporated into both, cytoplasmic and intracytoplasmic membranes, while incorporation of succinate oxidizing systems is confined to intracytoplasmic membranes only.Activities of photophosphorylation and succinate dependent NAD+ reduction in the light increase per Bchl about 1.8 times. On a Bchl basis increases of the fast light induced on reactions at 422 nm and increases of soluble cytochrome c 2 levels are comparable to increases of photophosphorylations and succinate dependent activities. But increases of slow light off reactions at 428 nm and of b-type cytochrome levels become three times greater then increases of cytochrome c 2 reactions and levels. These results infer that although electrontransport reactions of intracytoplasmic membranes change correlated to each other, Bchl, cytochrome c 2 and b-type cytochromes cellular levels are independent of each other. Furthermore, the data indicate that cytochrome c 2 rather than b-type cytochrome is involved with steps rate limiting for photophosphorylation.Abbreviations Bchl bacteriochlorophyll - DCIP 2,6-dichlorophenolindophenol  相似文献   
55.
Protein kinases belonging to the AGC group modulate many diverse cellular processes in all eukaryotes. One important way to regulate AGC kinases is through phosphorylation by the upstream kinase PDK1. PDK1 localization and activity usually depend on interactions with phospholipids, which are mediated by a conserved lipid-binding pleckstrin homology (PH) domain. We recently analyzed putative PDK1 sequences from 17 photosynthetic organisms, finding that PDK1s from vascular and nonvascular species seem to be distinguished by the presence or absence of a PH domain, respectively. The only other reported PDK1 lacking a PH domain is from yeast (Saccharomyces cerevisiae). These observations raise questions about how plant PDK1s and their lipid-binding capabilities have evolved in relation to other eukaryotes, and what this means for PDK1 function. Here we use 100 PDK1 sequences from diverse organisms to discuss possible evolutionary aspects of plant PDK1 structure and lipid binding.  相似文献   
56.
Eukaryotic cells do not normally initiate mitosis when DNA replication is blocked. This cell cycle checkpoint can be bypassed in some cells, however, by treatment with caffeine and certain other chemicals. Although S-phase arrested hamster cells undergo mitosis-specific events such as premature chromosome condensation (PCC) and nuclear envelope disassembly when exposed to caffeine, human cells show little response under the same conditions. To further investigate the molecular basis of this cell type specificity, a panel of hamster/human whole cell hybrids was created. The frequency of caffeine-induced PCC and the level of cyclin B-associated H1 kinase activity in the various hybrids were directly correlated with the extent of cyclin B synthesis during S-phase arrest. To determine whether expression of cyclin B alone could sensitize human cells to caffeine, cyclin B1 was transiently overexpressed in S-phase arrested HT1080 cells. The transfected cell population displayed a 5-fold increase in the frequency of caffeine-induced PCC when compared with normal HT1080 cells, roughly equivalent to the frequency of cells expressing exogenous epitope-tagged cyclin B1. In addition, immunofluorescent microscopy showed that individual cells overexpressing cyclin B1 during S phase arrest underwent PCC when exposed to caffeine. These results provide direct evidence that premature expression of cyclin B1 can make cells more vulnerable to chemically-induced uncoupling of mitosis from the completion of DNA replication. © 1995 Wiley-Liss, Inc.  相似文献   
57.
Nest boxes have grown in popularity as a habitat management tool in Australia during the last decade. This management use remains contentious because some studies suggest nest boxes are ineffective. There are three recent contentions: (i) nest boxes mostly benefit common species, (ii) exotic species may be dominant users of nest boxes, and (iii) species of conservation concern use nest boxes infrequently. We address these contentions using data from 1865 nest boxes involving eight nest box designs. These nest boxes were installed predominantly <200 m from a road in association with highway duplication and re‐alignment across 16 projects in New South Wales. The Common Brushtail Possum (Trichosurus vulpecula) is the species of most relevance to contention 1. It used 9% of boxes overall including 26% of ‘possum’ designated boxes. The most frequent nest box users were small petaurid gliders (mostly Sugar Gliders, Petaurus breviceps) which used 63% of ‘small glider’ designated boxes. This nest box and another suited to the Sugar Glider comprised 40% of all boxes installed, so it is not surprising that this species might be a common user. Exotic species were uncommon users of the nest boxes enabling contention 2 to be rejected. Active hives of Feral Honeybees (Apis mellifera) occupied just 1% of boxes, and another 1% of boxes were used by introduced rodents and birds. The Squirrel Glider (Petaurus norfolcensis) is the species most relevant to contention 3. It was seen in 80 boxes across 11 projects, representing 7% of the three types most frequently used. These observations are not consistent with the third contention. Nest boxes can provide many important insights about the requirements and interactions of hollow‐dependent fauna. However, they are not intended as an alternative to retaining hollow‐bearing trees.  相似文献   
58.
Habitat preferences need to be understood if species are to be adequately managed or conserved. Habitat preferences are presumed to reflect requirements for food, shelter and breeding, as well as interactions with predators and competitors. However, one or more of these requirements may dominate. Tree‐cavity‐dependent wildlife species are one example where shelter or breeding site requirements may dominate. We installed 120 nest boxes across 40 sites to target the vulnerable Brush‐tailed Phascogale (Phascogale tapoatafa) and the non‐threatened Sugar Glider (Petaurus breviceps). The provision of shelter sites where few of quality are available may enable better resolution of habitat preferences. Over three years, we observed the Brush‐tailed Phascogale at 17 sites, whereas the Sugar Glider was observed at 39 sites. We tested four broad hypotheses (H1–H4) relating to habitat that may influence occupancy by these species. There was no influence of hollow (cavity) abundance (H1) on either species suggesting our nest boxes had satisfied their shelter requirements. There was no influence of habitat structure (canopy and tree proximity) (H2) immediately around the nest box trees. We found no influence of distance to the forest edge (H3). Variables at and away from the nest box site that appear to reflect foraging substrates (H4) were influential on the Brush‐tailed Phascogale. Sugar Glider occupancy was only influenced by a single variable at the nest box site. The lack of influence of any other variables is consistent with the very high occupancy observed, suggesting most of the forest habitat is suitable when shelter sites are available. We found no evidence that the Sugar Glider reduced site use by the Brush‐tailed Phascogale.  相似文献   
59.
Richard I. Odle 《Autophagy》2020,16(4):775-776
ABSTRACT

For the last two decades there has been wide ranging debate about the status of macroautophagy during mitosis. Because metazoan cells undergo an “open” mitosis in which the nuclear envelope breaks down, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. While many studies have agreed that the number of autophagosomes is greatly reduced in cells undergoing mitosis, there has been no consensus on whether this reflects decreased autophagosome synthesis or increased autophagosome degradation. Reviewing the literature we were concerned that many studies relied too heavily on autophagy assays that were simply not appropriate for a relatively brief event such as mitosis. Using highly dynamic omegasome markers we have recently shown unequivocally that autophagosome synthesis is repressed at the onset of mitosis and is restored once cell division is complete. This is accomplished by CDK1, the master regulator of mitosis, taking over the function of MTORC1, to ensure autophagy is repressed during mitosis.  相似文献   
60.
Although aging and senescence have been extensively studied in the past few decades, however, there is lack of clinical treatment available for anti‐aging. This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts (2BS and WI38). BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence‐associated β‐galactosidase (SA‐β‐gal)‐positive cell rates of late PD cells grown in the BBR‐containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically, BBR improved cell growth and proliferation by promoting entry of cell cycles from the G0 or G1 phase to S/G2‐M phase. Most importantly, BBR extended the lifespan of chemotherapy‐treated mice and naturally aged mice by ~52% and ~16.49%, respectively. The residual lifespan of the naturally aged mice was extended by 80%, from 85.5 days to 154 days. The oral administration of BBR in mice resulted in significantly improved health span, fur density, and behavioral activity. Therefore, BBR may be an ideal candidate for the development of an anti‐aging medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号