首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16250篇
  免费   895篇
  国内免费   922篇
  18067篇
  2023年   161篇
  2022年   260篇
  2021年   300篇
  2020年   330篇
  2019年   407篇
  2018年   437篇
  2017年   351篇
  2016年   375篇
  2015年   423篇
  2014年   898篇
  2013年   1122篇
  2012年   805篇
  2011年   951篇
  2010年   702篇
  2009年   777篇
  2008年   876篇
  2007年   902篇
  2006年   739篇
  2005年   702篇
  2004年   620篇
  2003年   621篇
  2002年   530篇
  2001年   367篇
  2000年   350篇
  1999年   373篇
  1998年   371篇
  1997年   304篇
  1996年   277篇
  1995年   273篇
  1994年   254篇
  1993年   221篇
  1992年   196篇
  1991年   167篇
  1990年   134篇
  1989年   149篇
  1988年   97篇
  1987年   109篇
  1986年   82篇
  1985年   115篇
  1984年   161篇
  1983年   108篇
  1982年   107篇
  1981年   114篇
  1980年   80篇
  1979年   78篇
  1978年   65篇
  1977年   36篇
  1976年   46篇
  1975年   31篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Abstract: In rat hippocampal slices and in neurons in primary culture, K+-induced depolarization increased markedly and rapidly tyrosine phosphorylation of a 110-kDa protein (pp110) and, to a lesser degree, of a 120-kDa protein (pp120), in a calcium-dependent fashion. Qlutamate, 1-aminocyclopentane- trans -1,3-dicarboxylic acid (an agonist of metabotropic glutamate receptors), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (an agonist of ionotropic glutamate receptors) stimulated also tyrosine phosphorylation of pp110 and pp120. These effects were not observed in astrocytes in primary culture. In hippocampal slices tyrosine phosphorylation of pp110 and pp120 was stimulated by Ca2+-ionophores and by phorbol esters and antagonized by a chelator of intracellular Ca2+and by drugs that inhibit protein kinase C. Stimulation of muscarinic and α1,-adrenergic receptors increased also tyrosine phosphorylation of pp110 and pp120. These results demonstrate that membrane depolarization and stimulation of neurotransmitter receptors activate a tyrosine phosphorylation pathway in neurons. This pathway involves an increase in intracellular Ca2+ concentrations and the activation of protein kinase C. It may provide a biochemical basis for some neurotrophic effects of electrical activity and neurotransmitters and may contribute to the role of tyrosine phosphorylation in long-term potentiation.  相似文献   
32.
Transforming growth factor β1 (TGFβ1) inhibits epithelial cell proliferation late in the G1 phase of the cell cycle. We examined the effect of TGFβ1 on known late G1 cell cycle regulators in an attempt to determine the molecular mechanism of growth inhibition by this physiological inhibitor. The results demonstrate the TGFβ1 inhibits the late G1 and S phase specific histone H1 kinase activity of p33cdk2. This inhibitiion is not dur to TGFβ1's effect on p33cdk2 synthesis, but rather due to its negative effect on the late G1 phosphorylation of p33cdk2. It is also shown that TGFβ1 inhibits both late G1 cyclin A and cyclin E associated histon H1 kinase activities. The inhibitor has no effects on the synthesis of cyclin E but to inhibit the synthesis of cyclin A protein in a cell cycle dependent manner. If TGFβ1 is added to cells which have progressed futher than 8 hours into G1, then it is without inhibitory effect on cyclin A synthesis. These effect on TGFβ1 on late G1 cell cycle regulators correlate well with its inhibitory effects on cellular growth and suggest that these G1 cyclin dependent kinases might serve as targets for TGFβ1-mediated growth arrest.  相似文献   
33.
Summary We have examined the 13C and 13C chemical shifts of a number of proteins and found that their values at the N-terminal end of a helix provide a good predictor for the presence of a capping box. A capping box consists of a hydrogen-bonded cycle of four amino acids in which the side chain of the N-cap residue forms a hydrogen bond with the backbone amide of the N3 residue, whose side chain in turn may accept a hydrogen bond from the amide of the N-cap residue. The N-cap residue exhibits characteristic values for its backbone torsion angles, with and clustering around 94±15° and 167±5°, respectively. This is manifested by a 1–2 ppm upfield shift of the 13C resonance and a 1–4 ppm downfield shift of the 13C resonance, relative to their random coil values, and is mainly associated with the unusually large value of . The residues following the N-cap residue exhibit downfield shifts of 1–3 ppm for the 13C resonances and small upfield shifts for the 13C ones, typical of an -helix.  相似文献   
34.
Abstract: Levels of the guanine nucleotide binding proteins G11α and Gqα, which produce receptor regulation of phosphoinositidase C., were measured immunologically in 13 regions of rat central nervous system. This was achieved by immunoblotting membranes from these regions with antisera (CQ series) that identify these two polypeptides equally, following separation of the membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis conditions that can resolve Gqα and G11α. In all regions examined, Gqα was more highly expressed than G11α. Ratios of levels of Gqα to G11α varied between the regions from 5:1 to 2:1. Quantitative measurements of the levels of Gqα and G11α in each region were obtained by comparison with known amounts of purified liver Gqα and G11α and with E. coli expressed recombinant Gqα. Areas that expressed Gqα highly included olfactory bulb (930 ng/ mg of membrane protein), frontal cortex (700 ng/mg of membrane protein), parietal occipital cortex (670 ng/mg of membrane protein), caudate putamen (1,003 ng/mg of membrane protein), hippocampus (1,045 ng/mg of membrane protein), hypothalamus (790 ng/mg of membrane protein), and cerebellum (950 ng/mg of membrane protein). More modest levels were observed in thalamus (450 ng/mg of membrane protein), pituitary (480 ng/mg of membrane protein), optic chiasma (330 ng/mg of membrane protein), and spinal cord (350 ng/mg of membrane protein). Gna was more evenly expressed with values ranging from about 170 ng/mg of membrane protein in spinal cord and optic chiasma to close to 300 ng/mg of membrane protein in regions expressing high levels of Gqα. A third polypeptide could be identified by the CQ antisera in all brain regions. The possibility that this polypeptide is the α subunit of G14 is discussed.  相似文献   
35.
Abstract: Prolactin (PRL) has been reported to activate cellular proliferation in nonreproductive tissue, such as liver, spleen, and thymus. Recently, we have extended the possible role of PRL as a mammalian mitogen by demonstrating a mitogenic effect of PRL in cultured astrocytes. Although the cellular mechanisms by which PRL regulates cell growth are not fully understood, protein kinase C (PKC) has been implicated as one of the transmembrane signaling systems involved in the regulation of PRL-induced cell proliferation in Nb2 lymphoma cells and liver. In the present studies, we examined the possible role of PKC in PRL-induced proliferation of cultured astrocytes. Incubation of cultured astrocytes with 1 nM PRL resulted in a rapid translocation of PKC from the cytosol to the membrane, with maximal PKC activity in the membrane occurring 30 min after exposure to PRL. Translocation of PKC activity occurred over a physiological range of PRL, with maximal PKC activation occurring at 1 nM. At concentrations greater than 10 nM PRL, there was a decrease in the amount of PKC activity associated with the membrane fraction compared with that of cells stimulated with 1 nM PRL. Incubation of astrocytes with PRL in the presence of the PKC inhibitors staurosporine, 1-(-5-isoquinolinesulfonyl)-2-methylpiperazine, or polymyxin B blocked the PRL-induced increase in cell number with IC50 values of approximately 2 nM, 10 μM, and 6 μM, respectively. PKC is the only known cellular receptor for 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulates the translocation of PKC from the cytosol to the membrane. Incubation of astrocytes with 20 nM TPA resulted in an increase in the expression of proliferating cell nuclear antigen and cell number, whereas 4α-phorbol 12,13-didecanoate, an inactive phorbol ester, was ineffective. To examine further the effect of TPA and PRL on cellular proliferation, cultured astrocytes were incubated with increasing concentrations of TPA in the presence or absence of a minimal effective dose of PRL (100 pM). In the absence of PRL, incubation with TPA resulted in an inverted U-shaped dose-response curve, with 100 nM TPA resulting in a maximal increase in cell number. In the presence of 100 pM PRL, the TPA dose-response curve was shifted to the left, with maximal activity occurring with 10 nM TPA. Chronic stimulation of astrocytes with 500 nM TPA depleted the cells of PKC and blocked the PRL-induced increase in cell number. Finally, TPA treatment decreased cell-surface binding of 125I-PRL. These data indicate that the PKC is involved in the mitogenic effect of PRL in cultured astrocytes.  相似文献   
36.
37.
Summary NMR pulse sequences for measuring coupling constants in 13C, 15N-labeled proteins are presented. These pulse sequences represent improvements over earlier experiments with respect to resolution and number of radiofrequency pulses. The experiments are useful for measuring JNH , JNCO, JNC , JH N CO and JH N H . Applications to chymotrypsin inhibitor 2 (CI-2) are shown.  相似文献   
38.
39.
Dinitrogen-fixing legumes are frequently assumed to be less water-use efficient than plants utilizing soil mineral N, because of the high respiratory requirements for driving N2 fixation. However, since respiration is assumed not to discriminate against 13C, any differences in water-use efficiency exclusively due to respiration should not be apparent in carbon isotope discrimination () values. Our objective was to determine if the source of N (N2 fixation versus soil N) had any effect on of field-grown grain legumes grown at different elevations. Four legume species, Glycine max, Phaseolus lunatus, P. vulgaris, and Vigna unguiculata, were grown on five field sites spanning a 633 m elevational gradient on the island of Maui, Hawaii. The legumes were either inoculated with a mixture of three effective strains of rhizobia or fertilized weekly with urea at 100 kg N ha-1 in an attempt to completely suppress symbiotic N2-fixing activity. In 14 of 20 analyses of stover and 12 of 15 analyses of seed values were significantly higher (p=0.10) in the inoculated plants than the N-fertilized plants. Nitrogen concentrations were generally higher in the fertilized treatments than the inoculated treatments. The different values obtained depending on N-source may have implications in using as an indicator of water-use efficiency or yield potential of legumes.  相似文献   
40.
10-Deacetylabaccatin III (10 DAB), an important precursor for paclitaxel semisynthesis, is enhanced in yew extracts using C10-deacetylase and C13-deacylase enzymes.(4) C10-deacetylase is an intracellular enzyme produced by the fermentation of a soil microorganism, Nocardioides luteus (SC 13912). During the fermentation of Nocardioides luteus, the growth of cells reaches a maximum growth at 28 h. C10-deacetylase enzyme activity starts at 26 h and peaks at 38 h of the fermentation. The cells are recovered by centrifugation. The C10-deacetylase enzyme was purified from the Nocardioides luteus cells. The enzyme was purified 190-fold to near homogeneity. The purified enzyme appeared as a single band on 12.5% SDS-PAGE analysis with a molecular weight of 40,000 daltons. (c) 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号