首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1933篇
  免费   86篇
  国内免费   43篇
  2062篇
  2023年   25篇
  2022年   22篇
  2021年   35篇
  2020年   29篇
  2019年   38篇
  2018年   44篇
  2017年   31篇
  2016年   35篇
  2015年   56篇
  2014年   68篇
  2013年   108篇
  2012年   59篇
  2011年   78篇
  2010年   57篇
  2009年   52篇
  2008年   56篇
  2007年   66篇
  2006年   62篇
  2005年   57篇
  2004年   51篇
  2003年   60篇
  2002年   62篇
  2001年   39篇
  2000年   49篇
  1999年   42篇
  1998年   35篇
  1997年   25篇
  1996年   27篇
  1995年   34篇
  1994年   21篇
  1993年   16篇
  1992年   24篇
  1991年   27篇
  1990年   23篇
  1989年   22篇
  1988年   25篇
  1987年   35篇
  1986年   15篇
  1985年   34篇
  1984年   44篇
  1983年   47篇
  1982年   57篇
  1981年   43篇
  1980年   62篇
  1979年   44篇
  1978年   29篇
  1977年   25篇
  1976年   20篇
  1975年   11篇
  1974年   18篇
排序方式: 共有2062条查询结果,搜索用时 15 毫秒
111.
The oxidation mechanism of caffeic acid (CAF) has been studied by means of cyclic voltammetry with the plastic formed carbon or glassy carbon electrode. CAF gives a well-developed two-electron reversible wave in acidic media, whereas it shows an irreversible behavior, i.e., a decrease of the rereduction peak, in less acidic media, suggesting that the oxidation of CAF follows an irreversible chemical reaction(s). Digital simulation analyses based on different oxidation mechanisms have been performed for the voltammograms obtained with the GC electrode in 1:1 (v/v) water:ethanol solutions. The results clearly show that the seeming two-electron oxidation of CAF occurs stepwise via one-electron processes, each of which follows an irreversible chemical reaction. It has also been suggested that the semiquinone radical as an intermediate of the one-electron oxidation should play an important role in the oxidation reaction. Evaluations of the rate constants for the chemical reactions have further suggested that the chemical reactions are dimerization reactions.  相似文献   
112.
Calcium signalling coordinates motility, cell invasion, and egress by apicomplexan parasites, yet the key mediators that transduce these signals remain largely unknown. One underlying assumption is that invasion into and egress from the host cell depend on highly similar systems to initiate motility. Using a chemical‐genetic approach to specifically inhibit select calcium‐dependent kinases (CDPKs), we instead demonstrate that these pathways are controlled by different kinases: both TgCDPK1 and TgCDPK3 were required during ionophore‐induced egress, but only TgCDPK1 was required during invasion. Similarly, microneme secretion, which is necessary for motility during both invasion and egress, universally depended on TgCDPK1, but only exhibited TgCDPK3 dependence when triggered by certain stimuli. We also demonstrate that egress likely comes under a further level of control by cyclic GMP‐dependent protein kinase and that its activation can induce egress and partially compensate for the inhibition of TgCDPK3. These results demonstrate that separate signalling pathways are integrated to regulate motility in response to the different signals that promote invasion or egress during infection by Toxoplasma gondii.  相似文献   
113.
The objective of this study was to determine whether cyclic strain could promote human umbilical vein endothelial cells (HUVECs) to express markers in common with the mature smooth muscle cell (SMC) phenotype, suggesting endothelial cell to SMC transdifferentiation. HUVECs were cultured on stretched membranes at 10% stretch and 60 cycles/min for 24-96 hr, and demonstrated elongation with enhanced and organized F-actin distribution. By using real-time polymerase chain reaction analysis, the mRNA levels of five specific SMC markers, SM22-alpha, alpha-smooth muscle actin (alpha-SMA), caldesmon-1, smooth muscle myosin heavy chain (SMMHC), and calponin-1 were significantly increased in cyclic strain-treated HUVECs as compared with those in static control cells. Protein levels of SM22-alpha and alpha-SMA were also substantially increased by Western blot and immunofluorescence staining. In addition, two specific endothelial markers, von Willebrand factor (vWF) and vascular endothelial growth factor receptor-2 (VEGFR-2), showed a reduction in mRNA expression. In addition, cyclic strain-induced increase of SM22-alpha and alpha-SMA expression were reversible when cells were cultured back to the static condition. These results demonstrate a possible endothelial cell to SMC transdifferentiation in response to cyclic strain. Hemodynamic forces in modulating endothelial phenotype may play an important role in the vascular system.  相似文献   
114.
Without the presence of a phosphotyrosyl group, a phage library derived non-phosphorylated cyclic peptide ligand of Grb2-SH2 domain attributed its high affinity and specificity to well-defined and highly favored interactions of its structural elements with the binding pocket of the protein. We have disclosed a significant compensatory role of the Glu(2-) sidechain for the absence of the phosphate functionality on Tyr(0) in the peptide ligand, cyclo(CH(2)CO-Glu(2-)-Leu-Tyr(0)-Glu-Asn-Val-Gly-Met(5+)-Tyr-Cys)-amide (termed G1TE). In this study, we report the importance of hydrophobic residue at the Tyr+5 site in G1TE. Both acidic and basic amino acid substitutes are disfavored at this position, and replacement of Met with beta-tert-butyl-Ala was found to improve the antagonist properties. Besides, the polarity of the cyclization linkage was implicated as important in stabilizing the favored binding conformation. Oxidation of the thioether linkage into sulfoxide facilitated the binding to Grb2-SH2 markedly. Simultaneous modification of the three distant sites within G1TE provided the best agent with an IC(50) of 220 nM, which is among the most potent non-phosphorous- and non-phosphotyrosine-mimic containing Grb2-SH2 domain inhibitors yet reported. This potent peptidomimetic provides a novel template for the development of chemotherapeutic agents for the treatment of erbB2-related cancer. Biological assays on G1TE(Gla(2-)) in which the original residue of Glu(2-) was substituted by gamma-carboxyglutamic acid (Gla) indicated that it could inhibit the interaction between activated GF receptor and Grb2 protein in cell homogenates of MDA-MB-453 breast cancer cells at the 2 microM level. More significantly, both G1TE(Gla(2-)) alone and the conjugate of G1TE(Gla(2-)) with a peptide carrier can effectively inhibit intracellular association of erbB2 and Grb2 in the same cell lines with IC(50) of 50 and 2 microM, respectively.  相似文献   
115.
The human respiratory tract is covered with airway surface liquid (ASL) that is essential for lung defense and normal airway function. The quantity and composition of ASL is regulated by active ion transport across the airway epithelium. Abnormal electrolyte transport produces changes in ASL volume and composition, inhibits mucociliary clearance and leads to chronic infection of airway surfaces, as is evident in cystic fibrosis. Agonists that induce intracellular increases in cAMP or Ca2+ are generally associated with electrolyte secretion. While these mechanisms have been studied in detail for many years, modulation of ion channels by nitric oxide (NO) has emerged only recently as a significant determinant of ion channel function. NO is a physiological regulator of transepithelial ion movement and alterations of its generation and action may play an important role in the pathogenesis of lung disorders characterized by hypersecretion of ASL. This review presents the current understanding of regulation of airway epithelial ion channels by NO and attempts to highlight the importance of this regulation for lung defense.  相似文献   
116.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   
117.
Synthetic peptide octarphin (TPLVTLFK, a selective agonist of nonopioid β‐endorphin receptor) was able to activate in a dose‐dependent manner murine macrophages to express nitric oxide (NO) synthase and to produce NO. Octarphin required lipopolysacharide for the optimal induction of NO production. Octarphin‐dependent NO production was sensitive to inhibition by dexamethasone and the NO synthase specific inhibitor NG‐monomethyl‐l ‐arginine. In the concentration range of 1–1000 nM, octarphin increased the cyclic 3′,5′‐guanosine monophosphate (cGMP) content in macrophages stimulated with lipopolysacharide. The effect was dependent on the peptide concentration and was maximal at a concentration of 100 nM. Thus, octarphin stimulates both NO and cGMP production in macrophages. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
118.
119.
Seven novel pyrazolone derivatives were synthesized and characterized by 1H NMR and 13C NMR spectra, mass spectra, infrared spectra and elemental analysis. Their terbium complexes were prepared and characterized by elemental analysis, EDTA titrimetric analysis, UV/vis spectra, infrared spectra and molar conductivity, as well as thermal analysis. The fluorescence properties and fluorescence quantum yields of the complexes were investigated at room temperature. The results indicated that pyrazolone derivatives had good energy‐transfer efficiency for the terbium ion. All the terbium complexes emitted green fluorescence characteristic of terbium ions, possessed strong fluorescence intensity, and showed relatively high fluorescence quantum yields. Cyclic voltammograms of the terbium complexes were studied and the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) energy levels of these complexes were estimated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
120.
Unmethylated CpG dinucleotide (CpG motif) is involved in the exacerbation of DNA-associated autoimmune diseases. We investigated the effect of DNA containing 8-hydroxydeoxyguanosine (oxo-dG), a representative DNA biomarker for oxidative stress in the diseases, on CpG motif-dependent inflammatory responses. ODN1668 and ODN1720 were selected as CpG-DNA and non-CpG DNA, respectively. Deoxyguanosine in the CpG motif (G9) or outside the motif (G15) of ODN1668 was substituted with oxo-dG to obtain oxo(G9)-1668 and oxo(G15)-1668, respectively. Oxo(G15)-1668 induced a significantly higher amount of tumor necrosis factor (TNF)-α from RAW264.7 macrophage-like cells than ODN1668, whereas oxo(G9)-1668, oxo(G8)-1720, or oxo(G15)-1720 hardly did. CpG DNA-induced TNF-α production was significantly increased by addition of oxo(G8)-1720 or oxo(G15)-1720, but not of ODN1720. This oxo-dG-containing DNA-induced increase in TNF-α production was also observed in primary cultured macrophages isolated from wild-type mice, but not observed in those from Toll-like receptor (TLR)-9 knockout mice. In addition, TNF-α production by ligands for TLR3, TLR4, or TLR7 was not affected by oxo-dG-containing DNA. Then, the footpad swelling induced by subcutaneous injection of ODN1668 into mice was increased by coinjection with oxo(G8)-1720, but not with ODN1720. These results indicate that oxo-dG-containing DNA increases the CpG motif-dependent inflammatory responses, which would exacerbate DNA-related autoimmune diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号