首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   12篇
  国内免费   1篇
  2023年   3篇
  2022年   6篇
  2021年   5篇
  2020年   4篇
  2019年   11篇
  2018年   19篇
  2017年   10篇
  2016年   6篇
  2015年   6篇
  2014年   43篇
  2013年   37篇
  2012年   33篇
  2011年   60篇
  2010年   31篇
  2009年   40篇
  2008年   28篇
  2007年   28篇
  2006年   34篇
  2005年   27篇
  2004年   18篇
  2003年   14篇
  2002年   7篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有600条查询结果,搜索用时 109 毫秒
481.
  • Genome size evolution and its relationship with pollen grain size has been investigated in sweet potato (Ipomoea batatas), an economically important crop which is closely related to diploid and tetraploid species, assessing the nuclear DNA content of 22 accessions from five Ipomoea species, ten sweet potato varieties and two outgroup taxa.
  • Nuclear DNA amounts were determined using flow cytometry. Pollen grains were studied using scanning and transmission electron microscopy.
  • 2C DNA content of hexaploid I. batatas ranged between 3.12–3.29 pg; the mean monoploid genome size being 0.539 pg (527 Mbp), similar to the related diploid accessions. In tetraploid species I. trifida and I. tabascana, 2C DNA content was, respectively, 2.07 and 2.03 pg. In the diploid species closely related to sweet potato e.g. I. ×leucantha, I. tiliacea, I. trifida and I. triloba, 2C DNA content was 1.01–1.12 pg. However, two diploid outgroup species, I. setosa and I. purpurea, were clearly different from the other diploid species, with 2C of 1.47–1.49 pg; they also have larger chromosomes. The I. batatas genome presents 60.0% AT bases.
  • DNA content and ploidy level were positively correlated within this complex. In I. batatas and the more closely related species I. trifida, the genome size and ploidy levels were correlated with pollen size. Our results allow us to propose alternative or complementary hypotheses to that currently proposed for the formation of hexaploid Ipomoea batatas.
  相似文献   
482.
Both the root and stem bark of Mahonia species were popular folk medicines. The plant has several proven biological activities including anti-bacterial, anti-fungal, and anti-inflammatory effects. However, Mahonia has not been studied for its anticancer effects. In the present study, we made extracts from Mahonia oiwakensis (MOE), a selected species in Taiwan, and investigated their effects on various human lung cells. We found that MOE-induced apoptotic death in human A549 non-small-cell lung carcinoma (NSCLC) cells in a dose- and time-dependent manner. Treatment with the extracts also caused an increase in the sub-G1 fraction of cells, chromosome condensation, and DNA fragmentation. The mitochondrial-mediated pathway was implicated in this MOE-induced apoptosis as evidenced by the activation of the caspase cascade, cleavage of poly (ADP-ribose) polymerase (PARP), disruption of mitochondrial membrane potential, and release of cytochrome C. A higher ratio of Bax/Bcl-2 proteins and cleavage of Bid were also observed in MOE-induced cell apoptosis. In A549 tumor-xenografted nude mice, MOE also retarded in vivo proliferation (P < 0.05) and induced apoptosis in tumor cells, as shown by a decrease in Ki-67-positive staining (P < 0.05) and increased transferase-mediated dUTP nick-end labeling (TUNEL)-positive staining (P < 0.05). In conclusion, MOE inhibits the growth of human lung cancer cells in vitro and in vivo, suggesting that it may have therapeutic potential against human lung cancer.  相似文献   
483.
Cd is an industrial and environmental pollutant that affects many organs in humans and other mammals. However, the molecular mechanisms of Cd-induced nephrotoxicity are unclear. In this study, we show that endoplasmic reticula (ER) played a pivotal role in Cd-induced apoptosis in mesangial cells. Using Fluo-3 AM, the intracellular concentration of calcium ([Ca2+]i) was detected as being elevated as time elapsed after Cd treatment. Co-treatment with BAPTA-AM, a calcium chelator, was able to significantly suppress Cd-induced apoptosis. Calcineurin is a cytosolic phosphatase, which was able to dephosphorylate the inositol-1,4,5-triphosphate receptor (IP3R) calcium channel to prevent the release of calcium from ER. Cyclosporine A, a calcineurin inhibitor, increased both [Ca2+]i and the percentage of Cd-induced apoptosis. However, EGTA and the IP3R inhibitor, 2-APB, were able to partially modulate Cd cytotoxicity. These results led us to suggest that the extracellular and ER-released calcium plays a crucial role in Cd-induced apoptosis in mesangial cells. Following this line, we further detected the ER stress after Cd treatment since ER is one of the major calcium storage organelles. After Cd exposure, GADD153, a hallmark of ER stress, was upregulated (at 4 h of exposure), followed by activation of ER-specific caspase-12 and its downstream molecule caspase-3 (at 16 h of exposure). The pan caspase inhibitor, Z-VAD, and BAPTA-AM were able to reverse the Cd-induced cell death and ER stress, respectively. Furthermore, the mitochondrial membrane potential (ΔΨm) was depolarized significantly and cytochrome c was released after 24 h of exposure to Cd and followed by mild activation of caspase-9 at the 36-h time point, indicating that mitochondria stress is a late event. Therefore, we concluded that ER is the major killer organelle in Cd-induced mesangial cell apoptosis and that calcium oscillation plays a pivotal role.  相似文献   
484.
The protein kinase-mediated actions of peptide growth factors such as IGF-1 and bFGF protect cultured neurons from being killed by the oxygen and glucose deprivations (OGD) that prevail in the ‘stroked brain’. Here, we show that neuroprotection by IGF-1 is mediated by PI-3K/Akt, whereas that of bFGF is mediated by MAPK. IGF-1 and bFGF together did not further increase protection suggesting a downstream convergence of their pathways. Since protein kinases mediated the protection, a phosphatase inhibitor such as okadaic acid (OA) might be as protective as the growth factors against OGD. Here, we show that OA is actually a much more effective protector. It increased the phosphorylation of both PI-3K/Akt and MAPK, and stimulated new protein synthesis. OA also acted independently of the CREB activation and FKHRL1 and GSK-3 inactivation which have been implicated in IGF-1 actions.  相似文献   
485.
Apoptosis in mammalian cells is modulated by extrinsic and intrinsic signaling pathways through the formation of death receptor-mediated death-inducing signaling complex (DISC) and mitochondrial-derived apoptosome, respectively. We found by ultrastructural approaches that the antitumor drug edelfosine induced aggregates of lipid rafts containing Fas/CD95 receptor and Fas-associated death domain-containing protein in leukemic cells. Death receptors together with DISC and apoptosome constituents were recruited in rafts during edelfosine treatment in multiple myeloma cells. This apoptotic response involved caspases-8/-9/-10 that were translocated to rafts. Lipid raft disruption by cholesterol depletion inhibited loss of mitochondrial transmembrane potential, caspase activation and apoptosis, whereas cholesterol replenishment restored these responses. Our data indicate that rafts act as scaffolds where extrinsic and intrinsic apoptotic signaling pathways concentrate, forming clusters of apoptotic signaling molecule-enriched rafts (CASMER), which function as novel supramolecular entities in the triggering of apoptosis, and play an important role in edelfosine-induced apoptosis in blood cancer cells.  相似文献   
486.
Flavonoids are polyphenolic compounds able to favour cholesterol-lipid-raft formation and control cell signaling pathways by targeting receptors at the cell surface. Procyanidins (Pcy) are oligomeric and polymeric flavonoids formed by catechins and epicatechins monomers trigger apoptosis by activating TRAIL-death receptors in human colon adenocarcinoma SW480 cells. Here, we investigated whether the apoptotic process triggered by apple procyanidins involving the up-regulation of TRAIL-death receptors DR4/DR5 at the cell surface was dependent on cell membrane lipid-raft formation. We report that Pcy-induced apoptosis was enhanced in presence of nystatin, a cholesterol-sequestering compound inhibiting lipid-raft formation, without changing DR4/DR5 receptor expression. Treatment of SW480 cells with TRAIL caused a 3.5-fold increased level of caveolin together with a 2- to 2.5-fold increased amount of DR4/DR5 proteins in lipid rafts. Pcy-treatment did not induce any alteration in the expression of DR4/DR5 proteins as well as of caveolin present in lipid-raft fractions. Pcy induced an activation of TRAIL-death receptor-mediated apoptosis by a mechanism independent of lipid-raft formation. These results highlight the potential of Pcy as a direct activator of TRAIL-death receptors in cell membrane even in the absence of lipid rafts.  相似文献   
487.
Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to study the molecular details of its anchoring mechanism in a homologue series of lipids with the same polar head group but different hydrophobic chain length. The major coat proteins were reconstituted into 14:1PC, 16:1PC, 18:1PC, 20:1PC, and 22:1PC bilayers, and the fluorescence spectra were measured of the intrinsic tryptophan at position 26 and BADAN attached to an introduced cysteine at position 46, located at the opposite ends of the transmembrane helix. The fluorescence maximum of tryptophan shifted for 700 cm-1 on going from 14:1PC to 22:1PC, the corresponding shift of the fluorescence maximum of BADAN at position 46 was approximately 10 times less (∼ 70 cm-1). Quenching of fluorescence with the spin label CAT 1 indicates that the tryptophan is becoming progressively inaccessible for the quencher with increasing bilayer thickness, whereas quenching of BADAN attached to the T46C mutant remained approximately unchanged. This supports the idea that the BADAN probe at position 46 remains at the same depth in the bilayer irrespective of its thickness and clearly indicates an asymmetrical nature of the protein dipping in the lipid bilayer. The anchoring strength at the C-terminal domain of the protein (provided by two phenylalanine residues together with four lysine residues) was estimated to be roughly 5 times larger than the anchoring strength of the N-terminal domain.  相似文献   
488.
Engagement of membrane immunoglobulin (mIg) on WEHI-231 mouse B lymphoma cells results in growth arrest at the G1 phase of the cell cycle, followed by a reduction of mitochondrial membrane potential (ΔΨm) and apoptosis. WEHI-231 cells resemble immature B cells in terms of the cell surface phenotype and sensitivity to mIg engagement. However, the molecular mechanisms underlying mIg-induced loss of ΔΨm and apoptosis have not yet been established. In this study, we show that apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase 1 (JNK1) signaling pathway participates in mIg-induced apoptosis through the generation of reactive oxygen species (ROS). Stimulation of WEHI-231 cells with anti-IgM induces phosphorylation and subsequent activation of ASK1, leading to JNK activation. Anti-IgM stimulation immediately (5 min) induces hydrogen peroxide (H2O2) production with a substantial increase during later time points (36-48 h), accompanied by loss of ΔΨm and an increase in cells with sub-G1 DNA content. The anti-IgM-induced late-phase H2O2 production, loss of ΔΨm, and increase in the sub-G1 fraction were all reduced substantially in WEHI-231 cells overexpressing a dominant-negative form of ASK1, compared with control vector alone, but enhanced substantially in cells overexpressing a constitutively active form of ASK1. These mIg-mediated events were also partially abrogated by ROS scavenger N-acetyl-l-cysteine (NAC). Taken together, these results suggest that mIg engagement induces H2O2 production leading to activation of ASK1-JNK1 pathway, creating a feedback amplification loop of ROS-ASK/JNK that leads to loss of ΔΨm and finally apoptosis.  相似文献   
489.
The phosphatidylinositol 3-kinase-like protein kinases, including ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit), are the main kinases activated following various assaults on DNA. Although ATM and DNA-PKcs kinases are activated upon DNA double-strand breaks, evidence suggests that these kinases are rapidly phosphorylated by ATR kinase upon UV irradiation; thus, these kinases may also participate in the response to replication stress. Using UV-induced replication stress, we further characterize whether ATM and DNA-PKcs kinase activities are also involved in the cellular response. Contrary to the rapid activation of the ATR-dependent pathway, ATM-dependent Chk2 and KAP-1 phosphorylations, as well as DNA-PKcs Ser2056 autophosphorylation, reach their peak level at 4 to 8 h after UV irradiation. The delayed kinetics of ATM- and DNA-PKcs-dependent phosphorylations also correlated with a surge in H2AX phosphorylation, suggesting that double-strand break formation resulting from collapse of replication forks is responsible for the activation of ATM and DNA-PKcs kinases. In addition, we observed that some phosphorylation events initiated by ATR kinase in the response to UV were mediated by ATM at a later phase of the response. Furthermore, the S-phase checkpoint after UV irradiation was defective in ATM-deficient cells. These results suggest that the late increase of ATM activity is needed to complement the decreasing ATR activity for maintaining a vigilant checkpoint regulation upon replication stress.  相似文献   
490.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号