首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   28篇
  国内免费   65篇
  2024年   3篇
  2023年   8篇
  2022年   6篇
  2021年   6篇
  2020年   9篇
  2019年   25篇
  2018年   18篇
  2017年   29篇
  2016年   18篇
  2015年   12篇
  2014年   28篇
  2013年   24篇
  2012年   24篇
  2011年   25篇
  2010年   14篇
  2009年   31篇
  2008年   30篇
  2007年   39篇
  2006年   25篇
  2005年   32篇
  2004年   20篇
  2003年   20篇
  2002年   21篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   7篇
  1997年   12篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有566条查询结果,搜索用时 15 毫秒
81.
Biomass and cover of Microcoleus lyngbyaceus (Kützing) Crouan were monitored at inshore seagrass habitats in southwest Puerto Rico for 16 months. Substantial localized blooms with maximum cover of 100% and comprising >600 g/m2 were encountered. Abundance of Microcoleus (biomass and percent cover) were not significantly correlated with either water temperature or water column nitrogen (as nitrate and nitrite concentrations). M. lyngbyaceus has locally been implicated as being detrimental to the seagrass Thalassia testudinum König which is supported by circumstantial evidence. Thalassia cover declined in permanent quadrats that were strongly impacted with Microcoleus.  相似文献   
82.
There are several conflicting hypothesis that deal with the influence of flooding in the natural river–floodplain systems. According to the Flood Pulse Concept, the flood pulses are not considered to be a disturbance, while some recent studies have proven that floods can be a disturbance factor of phytoplankton development. In order to test whether flooding acts as a disturbance factor in the shallow Danubian floodplain lake (Lake Sakadaš), phytoplankton dynamics was investigated during two different hydrological years—extremely dry (2003) without flooding and usually flooded (2004). A total of 18 phytoplankton functional groups were established. The sequence of phytoplankton seasonality can be summarized P/D → E (W1, W2) → C/P (only in potamophase) → S2/H1/SN/S1 → W1/W2 → P/D. The canonical correspondence analysis (CCA) demonstrated that the water level was a significant environmental variable in 2004. Due to the higher total biomass of Bacillariophyceae established under potamophase conditions, floodings in the early spring seem to be a stimulating factor for phytoplankton development. On the other hand, the flood pulses in May and June had dilution effects on nutrients, so that a significantly lower phytoplankton biomass was established indicating that flooding pulses can be regarded as a disturbance event. Such conditions supported diatom development (D, P, C species) and prolonged its dominance in the total phytoplankton biomass. A long-lasting Cyanoprokaryota bloom (various filamentous species—S1, S2, SN and H1 representatives) with very high biomass characterized the limnophase (dry conditions) in summer and autumn of both years. In-lake variables (lake morphology, internal loadings of nutrients from sediments, light conditions) seem to be important for the appearance of Cyanoprokaryota bloom. The equilibrium phase was found during the Cyanoprokaryota bloom only in the extremely dry year. This study showed that depending on the time scale occurrence, flood pulses can be a stimulating or a disturbance factor for phytoplankton development in Lake Sakadaš. Handling editor: J. Padisak  相似文献   
83.
For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA ]. All bacterial populations clearly stratified according to water column chemistry. The GSB population peaked in the chemocline ( c . 8 × 106 GSB cells mL−1) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA , and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB Chlorobium clathratiforme strain BU-1 (DSM 5477). This ribotype was not detected in Lake Cadagno before the bloom of GSB. These observations suggest that the C. clathratiforme population that has stabilized in Lake Cadagno is clonal. We speculate that such a clonal bloom could be caused by environmental disturbance, mutational adaptation, or invasion.  相似文献   
84.
Lake eutrophication: Control countermeasures and recycling exploitation   总被引:6,自引:0,他引:6  
Boqiang Qin   《Ecological Engineering》2009,35(11):1569-1573
Eutrophication is a world-wide environmental issue. Lake Taihu is a typical large, shallow, eutrophic lake located in delta of River Changjiang (Yangtze River). A large-scale ecological engineering experiment targeted at water quality improvement was implemented in Meiliang Bay, Lake Taihu. In this special issue, there are six papers related to water purification and algal bloom control techniques applied in this experiment. Four papers address the validity and efficiency of water quality improvement of this ecological engineering and one paper presents a similar but small-size ecological engineering. The others focus on macrophyte restoration, aquatic plant management and recycling exploitation. The editorial paper highlights the main results and conclusions from these papers.  相似文献   
85.
In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a suite of microcystin synthesis genes (mcyAmcyJ), while non-toxic strains do not. For this study, we assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 16S (an indicator of total Microcystis), from samples collected from four lakes across the Northeast US over a two-year period. Nutrient concentrations and water quality were measured and experiments were conducted which examined the effects of elevated levels of temperatures (+4 °C), nitrogen, and phosphorus on the growth rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01% and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing) Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis, chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied. Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments, suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells in most experiments suggesting that future eutrophication and climatic warming may additively promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with higher microcystin content.  相似文献   
86.
Analyses of the effects of extreme climate periods have been used as a tool to predict ecosystem functioning and processes in a warmer world. The winter half‐year 2006/2007 (w06/07) has been extremely warm and was estimated to be a half‐a‐millennium event in central Europe. Here we analyse the consequences of w06/07 for the temperatures, mixing dynamics, phenologies and population developments of algae and daphnids (thereafter w06/07 limnology) in a deep central European lake and investigate to what extent analysis of w06/07 limnology can really be used as a predictive tool regarding future warming. Different approaches were used to put the observations during w06/07 into context: (1) a comparison of w06/07 limnology with long‐term data, (2) a comparison of w06/07 limnology with that of the preceding year, and (3) modelling of temperature and mixing dynamics using numerical experiments. These analyses revealed that w06/07 limnology in Lake Constance was indeed very special as the lake did not mix below 60 m depth throughout winter. Because of this, anomalies of variables associated strongly with mixing behaviour, e.g., Schmidt stability and a measure for phosphorus upward mixing during winter exceeded several standard deviations the long‐term mean of these variables. However, our modelling results suggest that this extreme hydrodynamical behaviour was only partially due to w06/07 meteorology per se, but depended also strongly on the large difference in air temperature to the previous cold winter which resulted in complete mixing and considerable cooling of the water column. Furthermore, modelling results demonstrated that with respect to absolute water temperatures, the model ‘w06/07’ most likely underestimates the increase in water temperature in a warmer world as one warm winter is not sufficient to rise water temperatures in a deep lake up to those expected under a future climate.  相似文献   
87.
滇池试验围隔内不同形态铁浓度的变化与物化因子的关系   总被引:4,自引:0,他引:4  
在蓝藻水华形成以后,通过围隔实验,从2003年6月份到10月份定期采样测定水体中的pH、溶解氧(DO)、水温、总铁、亚铁、过滤性铁(<0.45μm)和可溶性磷的浓度,研究物化因子对不同形态铁浓度变化的影响。实验结果表明,蓝藻水华优势种微囊藻在pH 7—9和水温17.5—20.5℃的条件下,生长旺盛,消耗了大量的亚铁,使亚铁浓度大幅度下降;溶解氧和磷酸盐对亚铁浓度没有显著影响;在水华蓝藻严重发生的条件下,水体中的总铁和过滤性铁浓度没有显著意义的变化,而亚铁浓度的变化与水华蓝藻的种群密度成显著负相关(r=-0.8391,P<0.05)。  相似文献   
88.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}    相似文献   
89.
Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild‐type controls, modified expression of heat‐shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up‐regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress‐related genes was also impacted in Fld‐expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.  相似文献   
90.
大沙河水库冬季浮游植物群落结构与水华分析   总被引:1,自引:0,他引:1  
李季东  肖利娟  胡韧 《生态科学》2011,30(5):500-506
于2009年12月、2010年1月和2月对广东省大沙河水库湖泊区距水表层0.5m、5m和10m三个水层的浮游植物进行了定性与定量分析,同时对环境变量进行了测定.采样期间三个月的总降雨量为263mm,水温范围在15.5~19.4℃之间,水体处于混合状态.三次采样中,共检测出浮游植物69种(属),隶属于6个门,浮游植物丰度范围在4.1×106~14.8×106cells·L-1之间.三个水层的浮游植物优势种类差异不显著(p>0.05),丰度的主要优势种为蓝藻门的卷曲鱼腥藻(Anabaena circinalis)、铜绿微囊藻(Microcystis aeruginosa),这两个种的丰度之和占总丰度的70%以上,在2009年12月和2010年2月的表层出现了轻度鱼腥藻和微囊藻水华.蓝藻自身的浮力调节机制和适应低磷的生活策略是其成为优势种的重要原因,相对稳定的外部条件、水体混合与富营养共同导致的光的可获得性的减少是形成蓝藻水华的关键外部因子.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号