首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   251篇
  国内免费   332篇
  2024年   3篇
  2023年   48篇
  2022年   35篇
  2021年   56篇
  2020年   79篇
  2019年   88篇
  2018年   73篇
  2017年   99篇
  2016年   89篇
  2015年   102篇
  2014年   89篇
  2013年   114篇
  2012年   70篇
  2011年   79篇
  2010年   56篇
  2009年   89篇
  2008年   97篇
  2007年   79篇
  2006年   78篇
  2005年   65篇
  2004年   57篇
  2003年   52篇
  2002年   48篇
  2001年   34篇
  2000年   43篇
  1999年   26篇
  1998年   49篇
  1997年   24篇
  1996年   27篇
  1995年   28篇
  1994年   17篇
  1993年   13篇
  1992年   18篇
  1991年   22篇
  1990年   21篇
  1989年   18篇
  1988年   18篇
  1987年   17篇
  1986年   14篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   17篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1973年   1篇
  1958年   3篇
排序方式: 共有2097条查询结果,搜索用时 296 毫秒
71.
Silica is well known for its role as inducible defence mechanism countering herbivore attack, mainly through precipitation of opaline, biogenic silica (BSi) bodies (phytoliths) in plant epidermal tissues. Even though grazing strongly interacts with other element cycles, its impact on terrestrial silica cycling has never been thoroughly considered. Here, BSi content of ingested grass, hay and faeces of large herbivores was quantified by performing multiple chemical extraction procedures for BSi, allowing the assessment of chemical reactivity. Dissolution experiments with grass and faeces were carried out to measure direct availability of BSi for dissolution. Average BSi and readily soluble silica numbers were higher in faeces as compared with grass or hay, and differences between herbivores could be related to distinct digestive strategies. Reactivity and dissolvability of BSi increases after digestion, mainly due to degradation of organic matrices, resulting in higher silica turnover rates and mobilization potential from terrestrial to aquatic ecosystems in non-grazed versus grazed pasture systems (2 versus 20 kg Si ha−1 y−1). Our results suggest a crucial yet currently unexplored role of herbivores in determining silica export from land to ocean, where its availability is linked to eutrophication events and carbon sequestration through C–Si diatom interactions.  相似文献   
72.
This study explores the influence of a selection of adjuvants and of three different nozzle sizes on the foliar application of entomopathogenic nematodes (EPNs). Two EPN species were studied: Steinernema feltiae and Steinernema carpocapsae. A viability test of EPNs suspended in different solutions of adjuvants showed that all selected alcohol ethoxylates and an alkyl polysaccharide have an immobilising effect on the selected nematode species. In a sedimentation test, xanthan gum proved to be the only adjuvant in a broad selection, capable of delaying sedimentation of EPNs in suspension. Without xanthan gum, sedimentation of S. carpocapsae and S. feltiae was noticeable after 20 and 10 minutes, respectively. When xanthan gum (0.3 g/L) was added to the suspension, no signs of sedimentation were noticed after 20 minutes with both EPN species. An ISO 02 flat fan nozzle can clog when spraying S. carpocapsae. A deposition test determined that an ISO 04 standard flat fan nozzle provides a higher relative deposition on cauliflower leaves and is therefore a better nozzle choice than the bigger ISO 08 standard flat fan nozzle for spraying S. carpocapsae. The addition of a spreading agent improved the deposition of S. carpocapsae. Adding xanthan gum to the EPN-spreading agent mixtures did not further improve deposition.  相似文献   
73.
The arthropod cuticle acts as a physiochemical barrier protecting the organism from pathogens' entry. Entomopathogenic fungi actively penetrate the cuticles of arthropod hosts and are therefore directly affected by cuticle composition. Previously we have observed that Metarhizium spp. developing on resistant ticks ultimately die without penetrating tick's cuticle, suggesting that the cuticles of resistant ticks have antifungal compounds. In the present study, lipids and water-soluble cuticular components were extracted from engorged female tick cuticles, of one susceptible and one resistant tick species to Metarhizium spp. While conidia exposed to lipids from the susceptible tick, Rhipicephalus annulatus, germinated and differentiated into appressorium, conidia exposed to lipids from the resistant tick, Hyalomma excavatum, were inhibited. Soluble cuticular component extracts from both susceptible and resistant ticks stimulated conidial germination but not appressorium differentiation. A comparative analysis of the fatty acid profile in lipid extract of each tick exhibited similar compositions, but the relative abundance of C16:0, C18:0, C18:1ω9C and C20:0 was 2–5 times higher in the extracts from resistant ticks. All of these fatty acids inhibited conidial germination in vitro at 1% and 0.1% w/v concentration, but C20:0 stimulated appressorium differentiation at low concentration. This is the first report demonstrating a possible link between the presence of antifungal compounds in a specific concentration in tick cuticle and tick resistance to infection.  相似文献   
74.
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.  相似文献   
75.
In this study, conducted in French Guiana, a part of the native range of the fire ant Solenopsis saevissima, we compared the cuticular hydrocarbon profiles of media workers with previous results based on intraspecific aggressiveness tests. We noted a strong congruence between the two studies permitting us to delimit 2 supercolonies extending over large distances (up to 54 km), a phenomenon known as unicoloniality. Solenopsis geminata workers, taken as an out‐group for cluster analyses, have a very different cuticular hydrocarbon profile. Because S. saevissima has been reported outside its native range, our conclusion is that this species has the potential to become invasive because unicoloniality (i.e., the main attribute for ants to become invasive) was shown at least for the Guianese population.  相似文献   
76.
Featuring pronounced controllability, versatility, and scalability, electrophoretic deposition (EPD) has been proposed as an efficient method for film assembly and electrode/solid electrolyte fabrication in various energy storage/conversion devices including rechargeable batteries, supercapacitors, and fuel cells. High‐quality electrodes and solid electrolytes have been prepared through EPD and exhibit advantageous performances in comparison with those realized with traditional methods. Recent advances in the application of EPD materials in electrochemical energy storage and conversion devices are summarized. In particular, the parameters that influence the efficiency of an EPD process from colloidal preparation to deposition are evaluated with the aim to provide insightful guidance for realizing high‐performance electrochemical energy conversion materials and devices.  相似文献   
77.
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long‐term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long‐term nitrogen fertilization caused the evolution of less‐mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less‐mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long‐term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.  相似文献   
78.
79.
80.
The performance of perovskite solar cells (PSCs) relies on the synthesis method and chemical composition of the perovskite materials. So far, PSCs that have adopted two‐step sequential deposited perovskite with the state‐of‐art composition (FAPbI3)1?x(MAPbBr3)x (x < 0.05) have achieved record power conversion efficiency (PCE), while their one‐step antisolvent dripping counterparts with typical composition Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 with more bromine have exhibited much better long‐term operational stability. Thus, halogen engineering that aims to elevate bromine content in sequential deposited perovskite film would push operational stability of PSCs toward that of antisolvent dripping deposited perovskite materials. Here, a Br‐rich seeding growth method is devised and perovskite seed solution with high bromine content is introduced into a PbI2 precursor, leading to bromine incorporation in the resulting perovskite film. Photovoltaic devices fabricated by Br‐rich seeding growth method exhibit a PCE of 21.5%, similar to 21.6% for PSCs having lower bromine content. Whereas, the operational stability of PSCs with higher bromine content is significantly enhanced, with over 80% of initial PCE retained after 500 h tracking at maximum power point under 1‐sun illumination. This work highlights the vital importance of halogen composition for the operational stability of PSCs, and introduces an effective way to incorporate bromine into mixed‐cation‐halide perovskite film via sequential deposition method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号