首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1519篇
  免费   251篇
  国内免费   332篇
  2024年   8篇
  2023年   48篇
  2022年   35篇
  2021年   56篇
  2020年   79篇
  2019年   88篇
  2018年   73篇
  2017年   99篇
  2016年   89篇
  2015年   102篇
  2014年   89篇
  2013年   114篇
  2012年   70篇
  2011年   79篇
  2010年   56篇
  2009年   89篇
  2008年   97篇
  2007年   79篇
  2006年   78篇
  2005年   65篇
  2004年   57篇
  2003年   52篇
  2002年   48篇
  2001年   34篇
  2000年   43篇
  1999年   26篇
  1998年   49篇
  1997年   24篇
  1996年   27篇
  1995年   28篇
  1994年   17篇
  1993年   13篇
  1992年   18篇
  1991年   22篇
  1990年   21篇
  1989年   18篇
  1988年   18篇
  1987年   17篇
  1986年   14篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   17篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1973年   1篇
  1958年   3篇
排序方式: 共有2102条查询结果,搜索用时 46 毫秒
271.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   
272.
《植物生态学报》2017,41(10):1041
Aims Fine roots are the principal parts for plant nutrients acquisition and play an important role in the underground ecosystem. Increased nitrogen (N) deposition has changed the soil environment and thus has a potential influence on fine roots. The purpose of this study is to reveal the effect of N deposition on biomass, lifespan and morphology of fine root.Methods A field N addition experiment was conducted in a secondary broad-leaved forest in subtropical China from May 2013 to September 2015. Three levels of N treatments: CK (no N added), LN (5 g·m-2·a-1), and HN (15 g·m-2·a-1) were applied monthly. Responses of fine root biomass, lifespan, and morphology of Castanopsis platyacantha to N addition were analyzed by using a minirhizotron image system from April 2014 to September 2015. Surface soil sample (0-10 cm) was collected in November 2014 and soil pH value, and concentrations of NH4+-N and NO3--N were measured.Important findings The biomass and average lifespan of the fine roots of C. platyacantha were 128.30 g·m-3 and 113-186 days, respectively, in 0-45 cm soil layer. Nitrogen addition had no significant effect on either fine root biomass or lifespan in 0-45 cm soil layer. However, LN treatment significantly decreased C. platyacantha root superficial area in 0-15 cm soil layer. HN treatment significantly decreased soil pH value. Our study indicated that short-term N addition influences soil inorganic N concentration and thus decreased pH value in surface soil, and thereafter affect fine root morphology. Short-term N addition, however, did not affect the fine root biomass, lifespan and morphology in subsoil.  相似文献   
273.
Aims Desert soils play an important role in the exchange of major greenhouse gas (GHG) between atmosphere and soil. However, many uncertainties existed in understanding of desert soil role, especially in efflux evaluation under a changing environment. Methods We conducted plot-based field study in center of the Gurbantünggüt Desert, Xinjiang, and applied six rates of simulated nitrogen (N) deposition on the plots, i.e. 0 (N0), 0.5 (N0.5), 1.0 (N1), 3.0 (N3), 6.0 (N6) and 24.0 (N24) g·m-2·a-1. The exchange rates of N2O, CH4 and CO2 during two growing seasons were measured for two years after N applications. Important findings The average efflux of two growing seasons from control plots (N0) were 4.8 μg·m-2·h-1, -30.5 μg·m-2·h-1 and 46.7 mg·m-2·h-1 for N2O, CH4 and CO2, respectively. The effluxes varied significantly among seasons. N0, N0.5 and N1 showed similar exchange of N2O in spring and summer, which was relatively higher than in autumn, while the rates of N2O in N6 and N24 were controled by time points of N applications. The uptake of CH4 was relatively higher in both spring and summer, and lower in autumn. Emission of CO2 changed minor from spring to summer, and greatly decreased in autumn in the first measured year. In the second year, the emission patterns were changed by rates of N added. N additions generally stimulated the emission of N2O, while the effects varied in different seasons and years. In addition, no obvious trends were found in the emission factor of N2O. The uptake of CH4 was not significantly affected by N additions. N additions did not change CO2 emissions in the first year, while high N significantly reduced the CO2 emissions in spring and summer of the second year, without affected in autumn. Structure equation model analysis on the factors suggested that N2O, CH4 and CO2 were dominantly affected by the N application rates, soil temperature or moisture and plant density, respectively. Over the growing seasons, both the net efflux and the global warming potential caused by N additions were small.  相似文献   
274.
One important factor affecting the process of tissue regeneration is scaffold stiffness loss, which should be properly balanced with the rate of tissue regeneration. The aim of the research reported here was to develop a computer tool for designing the architecture of biodegradable scaffolds fabricated by melt-dissolution deposition systems (e.g. Fused Deposition Modeling) to provide the required scaffold stiffness at each stage of degradation/regeneration. The original idea presented in the paper is that the stiffness of a tissue engineering scaffold can be controlled during degradation by means of a proper selection of the diameter of the constituent fibers and the distances between them. This idea is based on the size-effect on degradation of aliphatic polyesters. The presented computer tool combines a genetic algorithm and a diffusion-reaction model of polymer hydrolytic degradation. In particular, we show how to design the architecture of scaffolds made of poly(DL-lactide-co-glycolide) with the required Young’s modulus change during hydrolytic degradation.  相似文献   
275.
276.
Atmospheric acid deposition affects many streams worldwide, leading to decreases in pH and in base cations concentrations and increases in aluminum (Al) concentration. These changes in water chemistry induce profound changes in the diversity, structure and activity of biological communities and in ecosystem processes. However, monitoring programs rely only on chemical and structural indicators to assess stream integrity. Nevertheless, the ability of ecosystems to provide services rely on their functional integrity and thus ecosystem processes should be considered in monitoring programs. We assessed the potential for leaf litter decomposition, a fundamental ecosystem process in forest streams, to be used as a bioassessment tool of acidification effects on stream ecosystem functioning. In a field study in the Vosges Mountains (North-eastern France), using three leaf litter species (Alnus glutinosa, Acer pesudoplatanus and Fagus sylvatica) enclosed in fine and coarse mesh bags and incubated in streams flowing over granite or sandstone bedrock along an acidification gradient, we assessed if the response of litter decomposition to acidification depended on litter species, mesh size, parent lithology and acidification level. In a meta-analysis of 17 primary studies on the effect of acidification on leaf litter decomposition, reporting 67 acidified – reference stream comparisons, we assessed the consistency in the response of litter decomposition to acidification cross studies and the robustness of litter decomposition to be used as a bioassessment tool. Both the field study and meta-analysis revealed an overall strong inhibition (>60%) of leaf litter decomposition in acidified streams likely resulting from previously well described altered decomposer community structure and activity. No effect of leaf species was found in the field study, while in the meta-analysis inhibition of leaf litter decomposition in acidified streams was stronger for Fagus than for Acer, Quercus and Liriodendron. However, differences among leaf species in the meta-analysis might have been confounded by other differences among studies. The response of leaf litter decomposition to acidification was stronger in coarse than in fine mesh bags, indicating strong impairment of detritivore community structure and activity. The magnitude of inhibition also depended on parent lithology, but this is likely related to differences in the degree of acidification. Indeed, the magnitude of the inhibition of leaf litter decomposition increases with increases in H+ in Al concentration. Litter decomposition has the potential to be used as a bioassessment tool of acidification effects in streams since it shows consistent response to acidification across regions and is robust to experimental choices.  相似文献   
277.
细根在森林生态系统地下碳循环过程中具有核心地位.2007年11月-2009年11月,对华西雨屏区苦竹人工林进行了模拟氮沉降试验.氮沉降水平分别为对照(CK,0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)处理,研究氮沉降对苦竹人工林细根和土壤根际呼吸的影响.结果表明:不同处理氮沉降下,<1 mm和1~2 mm细根特性差异较大,与< 1 mm细根相比,1~2 mm细根的木质素、磷和镁含量更高,而纤维素、钙含量更低;氮沉降显著增加了<2 mm细根生物量,对照、低氮、中氮和高氮处理的细根生物量分别为(533±89)、(630±140)、(632±168)和(820±161) g·m-2,氮、钾、镁元素含量也明显增加;苦竹林各处理年均土壤呼吸速率分别为(5.85±0.43)、(6.48±0.71)、(6.84±0.57)和(7.62±0.55) t C·hm-2·a-1,氮沉降对土壤呼吸有明显的促进作用;苦竹林的年均土壤呼吸速率与<2 mm细根生物量和细根N含量呈极显著线性相关.氮沉降使细根生物量和代谢强度增加,并通过增加微生物活性促进了根际土壤呼吸.  相似文献   
278.
Floral sexual organ (stamen and pistil) movements are selective adaptations that have different functions in male-female reproduction and the evolution of flowering plants. However, the significance of stamen movements in the spatial–temporal function and separation of male and female organs has not been experimentally determined in species exhibiting floral temporal closure. The current study investigated the role of slow stamen (group-by-group) movement in male-female sexual function, and the effect of stamen movement on pollen removal, male-male and male-female interference, and mating patterns of Geranium pratense, a plant with temporal floral closure. This species uses stamen group-by-group movement and therefore anther-stigma spatial–temporal separation. Spatial separation (two whorls of stamen and pistil length) was shown to be stronger than temporal separation. We found that stamen movements to the center of the flower increase pollen removal, and the most common pollinators visited more frequently and for longer durations during the male floral stage than during the female floral stage. Petal movements increased both self-pollen deposition rate and sexual interference in G. pratense. The fruit and seed set of naturally and outcrossed pollinated flowers were more prolific than those of self-pollinated flowers. Group-by-group stamen movement, dehiscence of stamens, pistil movement, and male-female spatial–temporal functional separation of G. pratense before floral temporal closure may prevent male-female and stamen-stamen interference and pollen discounting, and may increase pollen removal and cross-pollination.  相似文献   
279.
280.
The voltammetric assay of Helicobacter pylori DNA was investigated using a bismuth-immobilized carbon nanotube electrode (BCNE). The analytical cyclic voltammetry (CV) peak potential was obtained at a 0.4 V reduction scan, where the diagnostic optimum square-wave (SW) stripping working range was achieved at 0.72-7.92 μg/mL H. pylori DNA (11 points). A relative standard deviation of 1.68% (RSD, n = 5) was obtained with 3.2 mg/mL H. pylori DNA using a 240 s accumulation time. Under optimum conditions, detection limit was 0.06 μg/mL. The developed sensors can be used for clinical application in the 15th doubted human gastric tissues, since the patient's peak current increased a hundred times more than the negative healthy tissue did. The sensing time obtained was only two minutes, and the process was simpler compared to common PCR amplification and electrophoresis photometric detection systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号