首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1515篇
  免费   251篇
  国内免费   336篇
  2102篇
  2024年   8篇
  2023年   48篇
  2022年   35篇
  2021年   56篇
  2020年   79篇
  2019年   88篇
  2018年   73篇
  2017年   99篇
  2016年   89篇
  2015年   102篇
  2014年   89篇
  2013年   114篇
  2012年   70篇
  2011年   79篇
  2010年   56篇
  2009年   89篇
  2008年   97篇
  2007年   79篇
  2006年   78篇
  2005年   65篇
  2004年   57篇
  2003年   52篇
  2002年   48篇
  2001年   34篇
  2000年   43篇
  1999年   26篇
  1998年   49篇
  1997年   24篇
  1996年   27篇
  1995年   28篇
  1994年   17篇
  1993年   13篇
  1992年   18篇
  1991年   22篇
  1990年   21篇
  1989年   18篇
  1988年   18篇
  1987年   17篇
  1986年   14篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   17篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1973年   1篇
  1958年   3篇
排序方式: 共有2102条查询结果,搜索用时 15 毫秒
151.
152.
细根在森林生态系统地下碳循环过程中具有核心地位.2007年11月-2009年11月,对华西雨屏区苦竹人工林进行了模拟氮沉降试验.氮沉降水平分别为对照(CK,0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)处理,研究氮沉降对苦竹人工林细根和土壤根际呼吸的影响.结果表明:不同处理氮沉降下,<1 mm和1~2 mm细根特性差异较大,与< 1 mm细根相比,1~2 mm细根的木质素、磷和镁含量更高,而纤维素、钙含量更低;氮沉降显著增加了<2 mm细根生物量,对照、低氮、中氮和高氮处理的细根生物量分别为(533±89)、(630±140)、(632±168)和(820±161) g·m-2,氮、钾、镁元素含量也明显增加;苦竹林各处理年均土壤呼吸速率分别为(5.85±0.43)、(6.48±0.71)、(6.84±0.57)和(7.62±0.55) t C·hm-2·a-1,氮沉降对土壤呼吸有明显的促进作用;苦竹林的年均土壤呼吸速率与<2 mm细根生物量和细根N含量呈极显著线性相关.氮沉降使细根生物量和代谢强度增加,并通过增加微生物活性促进了根际土壤呼吸.  相似文献   
153.
BACKGROUND AND AIMS: Silica deposition is one of the important characteristics of plants in the family Poaceae. There have been many investigations into the distribution, deposition and physiological functions of silica in this family. Two hypotheses on silica deposition have been proposed based on these studies. First, that silica deposition occurs passively as a result of water uptake by plants, and second, that silica deposition is controlled positively by plants. To test these two apparently contradictory hypotheses, silica deposition in relation to the ageing of leaf tissues in Sasa veitchii was investigated. METHODS: Tissues were examined using a light microscope and a scanning electron microscope equipped with an energy dispersive X-ray microanalyser. KEY RESULTS: The deposition process differed depending on cell type. In mesophyll tissue, fusoid cells deposited large amounts of silica depending on leaf age after maturation, while chlorenchyma cells deposited little. In epidermal tissue, comprised of eight cell types, only silica cells deposited large amounts of silica during the leaf's developmental process and none after maturation. Bulliform cells, micro-hairs and prickle hairs deposited silica densely and continuously after leaf maturation. Cork cells, guard cells, long cells and subsidiary cells deposited silica at low levels. CONCLUSIONS: The significance of these observations is discussed in relation to the two hypotheses proposed for silica deposition in Poaceae. The results of the present study clearly indicate that both hypotheses are compatible with each other dependent on cell types.  相似文献   
154.
Chemical, i.e. cuticular hydrocarbons, and molecular data were used to probe the phylogeography of Reticulitermes termites collected from various parts of France, Spain and Portugal. Phylogenetic relationships were inferred from sequences of the internal transcribed spacer (ITS2) of nuclear ribosomal RNA genes as well as from two partial mitochondrial DNA segments, the cytochrome oxidase II gene and a sequence combining the tRNA-Leu gene and fragments of the NADH dehydrogenase I and ribosomal 16S genes. Two species, namely, R. grassei and R. banyulensis, were identified based on an analysis of cuticular hydrocarbons and the identification was confirmed by ITS2 haplotyping. However, phylogeny based on the analysis of mitochondrial DNA was not completely in agreement with the conclusions drawn from the chemical and nuclear data. An analysis of 56 R. grassei colonies revealed intraspecific differentiation into two major lineages with distinct geographical ranges. Whereas analysis of cuticular hydrocarbons showed that R. banyulensis was chemically distinct from R. grassei, analysis of mitochondrial DNA showed its close kinship with the R. grassei lineage occurring in southern Spain. This kinship could be explained by their evolution from a common polymorphic ancestor species in this ice age refugium.  相似文献   
155.
Eastern white pine (Pinus strobus L.) shoots from mature trees were collected from two sites of contrasting soil pH: the Glendon campus of York University in Toronto, Ontario (pH 6.7 at 40 cm); and Muskoka near Huntsville, Ontario (pH 4.2 at 40 cm). Needles of ages 1-3 years were removed from the shoots, and the percentage of ash and silica was determined for all ages. Other needles were frozen in liquid nitrogen and kept in a cryo-biological storage system before x-ray microanalysis. Percentages of ash and silica were higher in the needles from Muskoka. Ash and silica increased with needle age for trees from the Muskoka site, but less so at the Toronto site. Of the 13 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Cu and Zn) detected by microanalysis, Mn, Fe, Cu and Zn were detected in small amounts in the epidermis, endodermis and transfusion tissue (the layer of tracheids and parenchyma immediately surrounding the vascular bundles), and K, P, S and Cl were almost ubiquitous in distribution. Sodium was occasionally detected in the transfusion tissue, and magnesium was concentrated in the endodermal cells. The epidermal walls, transfusion tissue and endodermis were major sites of calcium localization. Silicon was concentrated in the extreme tips of the needles in all tissues, but particularly in the transfusion tissue, and more so in the Muskoka samples. Microanalysis revealed a higher Al content in the Muskoka needles, that Al was concentrated in the needle tips and that the transfusion tissues were major sites of accumulation.  相似文献   
156.
At five European sites, differing in atmospheric Sinputs by a factor of 6, and differing in S isotope signatures ofthese inputs by up to 14 (CDT), we investigated thedirection and magnitude of an assimilation-related 34S shiftand the relationship between atmospheric deposition and Sretention in selected ecosystem compartments. Bulk precipitationand spruce throughfall were collected between 1994 and 1996 inthe Isle of Mull (Scotland), Connemara (Ireland), Thorne Moors(England), Rybárenská slat' and Oceán (both Czech Republic) andanalyzed for sulfate concentrations and 34S ratios. Eighteenreplicate samples per site of living Sphagnum collected inunforested peatlands and 18 samples of spruce forest floorcollected near each of the peatlands were also analyzed for Sconcentrations and 34S ratios. Assimilation of S was associatedwith a negative 34S shift. Plant tissues systematicallypreferred the light isotope 32S, on average by 2. There wasa strong positive correlation between the non-marine portion ofthe atmospheric S input and total S concentration in forest floorand Sphagnum, respectively (R = 0.97 and R = 0.85). Elevated Sinputs lead to higher S retention in these two organic-richcompartments of the ecosystem. It follows that equal emphasismust be placed on organic S as on adsorption/desorption ofinorganic sulfate when studying acidification reversal inecosystems. The sea-shore sites had rainfall enriched in theheavy isotope 34S due to an admixture of sea-spray. The inlandsites had low 34S reflecting 34S of sulfur emitted from localcoal-burning power stations. Sphagnum had always lower S contentsand higher 34S ratios compared to forest floor. The within-siterange of 34S ratios of Sphagnum and forest floor was wide (upto 12) suggesting that at least six replicate samples shouldbe taken when using 34S as a tracer.  相似文献   
157.
The aim of this study was to assess and monitor airway exhalation and deposition of particulate matter (PM). After standardizing inspiratory/expiratory flow and volumes, a novel device was tested on a group of 20 volunteers and in a field study on workers exposed to cristobalite. Both male and female subjects showed a higher percentage of deposition in the 0.5?μm channel than in the 0.3?μm channel on a laser particle counter, but it was higher in the males because of their higher exhaled lung volumes. The device was tested on a wider range of particles (0.3–0.5–1.0–2.5?μm) in the cristobalite productive division. The device has low intrasubject variability and good reproducibility, with geometric mean of %CV?相似文献   
158.
A controlled experiment was conducted in order to understand how functional and structural traits of species with different leaf habits (Fraxinus ornus and Quercus ilex) shift as a consequence of nitrogen (N) addition (30 kg ha yr?1) and to explore the effect that N has on the water stress response. The experiment was divided in two stages: stage I, N addition under well-watered condition; stage II, N addition under drought. Functionality of the photosynthetic machinery, growth and biomass partitioning were assessed. The N content at leaf level increases in F. ornus only, which invests resources on photosynthetic machinery, whereas Q. ilex tends to store N in non-photosynthetic biomass, increasing relative growth rate and biomass, resulting in different allometric ratio. This effect may play a role in water stress response. Stomatal conductance of Q. ilex treated with N and subjected to water stress is lower relative to drought treatment. On the contrary, F. ornus takes advantage of N addition that has ameliorative effects on its functionality when drought was imposed. The obtained results, highlighting response mechanisms to multiple stress factors, should help to better understand and assess the performance of forest ecosystems under the foreseen environmental changes.  相似文献   
159.
Background: Nitrogen (N) deposition in the Front Range of the southern Rocky Mountains has been increasing for several decades, and has exceeded the critical load for several ecological metrics.

Aims: Our objective was to predict potential future ecological changes in alpine zones in response to anthropogenic N deposition based on a review of research from Niwot Ridge, Colorado.

Results: Empirical observations and experimental studies indicate that plant, algal and soil microbe species compositions are changing in response to N deposition, with nitrophilic species increasing in abundance. Biotic sequestration of N deposition is insufficient to compensate for greater nitrate production, leading to the potential for acidification and base cation loss.

Conclusions: Changes in biotic composition in both terrestrial and aquatic ecosystems have important impacts on ecosystem functioning, including a lower capacity to take up and neutralise the acidifying effect of anthropogenic N, increasing phosphorus limitation of production in terrestrial and aquatic systems, and shifts in rates of N and carbon cycling. Continued elevated N deposition rates coupled with ongoing climate change, including warmer summer temperatures and lower snow cover of shorter duration, will influence the ecological thresholds for biotic and functional changes. We suggest that these thresholds will occur at lower inputs of N deposition under future climate change, meriting reconsideration of current N critical loads to protect sensitive alpine ecosystems.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号