首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   251篇
  国内免费   332篇
  2024年   3篇
  2023年   48篇
  2022年   35篇
  2021年   56篇
  2020年   79篇
  2019年   88篇
  2018年   73篇
  2017年   99篇
  2016年   89篇
  2015年   102篇
  2014年   89篇
  2013年   114篇
  2012年   70篇
  2011年   79篇
  2010年   56篇
  2009年   89篇
  2008年   97篇
  2007年   79篇
  2006年   78篇
  2005年   65篇
  2004年   57篇
  2003年   52篇
  2002年   48篇
  2001年   34篇
  2000年   43篇
  1999年   26篇
  1998年   49篇
  1997年   24篇
  1996年   27篇
  1995年   28篇
  1994年   17篇
  1993年   13篇
  1992年   18篇
  1991年   22篇
  1990年   21篇
  1989年   18篇
  1988年   18篇
  1987年   17篇
  1986年   14篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   17篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1973年   1篇
  1958年   3篇
排序方式: 共有2097条查询结果,搜索用时 828 毫秒
141.
Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3?) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3? and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3? vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3? would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban‐to‐rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3? was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3? was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3? seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3? accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N deposition, and responses by local decomposer communities.  相似文献   
142.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   
143.
Although social groups are characterized by cooperation, they are also often the scene of conflict. In non-clonal systems, the reproductive interests of group members will differ and individuals may benefit by exploiting the cooperative efforts of other group members. However, such selfish behaviour is thought to be rare in one of the classic examples of cooperation--social insect colonies--because the colony-level costs of individual selfishness select against cues that would allow workers to recognize their closest relatives. In accord with this, previous studies of wasps and ants have found little or no kin information in recognition cues. Here, we test the hypothesis that social insects do not have kin-informative recognition cues by investigating the recognition cues and relatedness of workers from four colonies of the ant Acromyrmex octospinosus. Contrary to the theoretical prediction, we show that the cuticular hydrocarbons of ant workers in all four colonies are informative enough to allow full-sisters to be distinguished from half-sisters with a high accuracy. These results contradict the hypothesis of non-heritable recognition cues and suggest that there is more potential for within-colony conflicts in genetically diverse societies than previously thought.  相似文献   
144.
Cuticular hydrocarbons (CHCs) are increasingly recognized as important to insects and are used for constructing taxonomies. However, multiple parameters affect the expression of CHCs besides a genetic component. We propose that selection may act differently on the expression of CHCs, depending on the evolutionary context. To explore the influence of selection, the CHCs of two closely related ant species, Lasius niger and Lasius platythorax, were studied in a multidisciplinary approach. We characterized (i) CHCs and (ii) niches (through baiting, activity observations and foraging analysis). The species were distinct in both measures, although to a varying degree. Although they showed moderate niche partitioning along diet and environmental preferences, chemical differences were unexpectedly pronounced. This may be explained by divergent selection on mate recognition cues or by other influences on CHCs. Such striking chemical differences among closely related species may not be the rule and suggest that taxonomies based on CHCs should be interpreted cautiously; though, they remain useful tools for differentiating among cryptic species.  相似文献   
145.
Question: Which environmental variables affect floristic species composition of acid grasslands in the Atlantic biogeographic region of Europe along a gradient of atmospheric N deposition? Location: Transect across the Atlantic biogeographic region of Europe including Ireland, Great Britain, Isle of Man, France, Belgium, The Netherlands, Germany, Norway, Denmark and Sweden. Materials and Methods: In 153 acid grasslands we assessed plant and bryophyte species composition, soil chemistry (pH, base cations, metals, nitrate and ammonium concentrations, total C and N, and Olsen plant available phosphorus), climatic variables, N deposition and S deposition. Ordination and variation partitioning were used to determine the relative importance of different drivers on the species composition of the studied grasslands. Results: Climate, soil and deposition variables explained 24% of the total variation in species composition. Variance partitioning showed that soil variables explained the most variation in the data set and that climate and geographic variables accounted for slightly less variation. Deposition variables (N and S deposition) explained 9.8% of the variation in the ordination. Species positively associated with N deposition included Holcus mollis and Leontodon hispidus. Species negatively associated with N deposition included Agrostis curtisii, Leontodon autumnalis, Campanula rotundifolia and Hylocomium splendens. Conclusion: Although secondary to climate gradients and soil biogeochemistry, and not as strong as for species richness, the impact of N and S deposition on species composition can be detected in acid grasslands, influencing community composition both directly and indirectly, presumably through soil‐mediated effects.  相似文献   
146.
Atmospheric nitrogen (N) deposition has been identified as a major threat to biodiversity, but field surveys of its effects have rarely focussed on sites which are actively managed to maintain characteristic species. We analysed permanent quadrat data from 106 plots in nature reserves on calcareous grassland sites in the United Kingdom collected during a survey between 1990 and 1993 and compared the data with the results from resurvey of 48 of these plots between 2006 and 2009. N deposition showed no significant spatial association with species richness, species diversity, or the frequency of species adapted to low nutrient conditions in the 1990–1993 dataset. However, temporal analysis showed that N deposition was significantly associated with changes in Shannon diversity and evenness. In plots with high rates of N deposition, there was a decrease in species diversity and evenness, a decline in the frequency of characteristic calcareous grassland species, and a lower number of rare and scarce species. As all sites had active management to maintain a high diversity and characteristic species, our results imply that even focussed management on nature conservation objectives cannot prevent adverse effects of high rates of N deposition. Structural equation modelling was used to compare different causal mechanisms to explain the observed effects. For change in Shannon diversity, direct effects of N deposition were the dominant mechanism and there was an independent effect of change in grazing intensity. In contrast, for change in herb species number, indirect effects on soil acidity, linked to both N and S deposition, were more important than direct effects of N deposition.  相似文献   
147.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   
148.
In this review, we present a conceptual model which links plant communities and saprotrophic microbial communities through the reciprocal exchange of growth-limiting resources. We discuss the numerous ways human-induced environmental change has directly and indirectly impacted this relationship, and review microbial responses that have occurred to date. We argue that compositional shifts in saprotrophic microbial communities underlie functional responses to environmental change that have ecosystem-level implications. Drawing on a long-term, large-scale, field experiment, we illustrate how and why chronic atmospheric N deposition can alter saprotrophic communities in the soil of a wide-spread sugar maple (Acer saccharum) ecosystem in northeastern North America, resulting in the slowing of plant litter decay, the rapid accumulation of soil organic matter, and the accelerated production and loss of dissolved organic carbon (DOC). Compositional shifts in soil microbial communities, mediated by ecological interactions among soil saprotrophs, appear to lie at the biogeochemical heart of ecosystem response to environmental change.  相似文献   
149.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   
150.
The effects of increasing ammonium concentrations in combination with different pH levels were studied on five heathland plant species to determine whether their occurrence and decline could be attributed to ammonium toxicity and/or pH levels. Plants were grown in growth media amended with four different ammonium concentrations (10, 100, 500 and 1000 micromol l(-1)) and two pH levels resembling acidified (pH 3.5 or 4) and weakly buffered (pH 5 or 5.5) situations. Survival of Antennaria dioica and Succisa pratensis was reduced by low pH in combination with high ammonium concentrations. Biomass decreased with increased ammonium concentrations and decreasing pH levels. Internal pH of the plants decreased with increasing ammonium concentrations. Survival of Calluna vulgaris, Deschampsia flexuosa and Gentiana pneumonanthe was not affected by ammonium. Moreover, biomass increased with increasing ammonium concentrations. Biomass production of G. pneumonanthe reduced at low pH levels. A decline of acid-sensitive species in heathlands was attributed to ammonium toxicity effects in combination with a low pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号