首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4539篇
  免费   434篇
  国内免费   290篇
  2024年   7篇
  2023年   51篇
  2022年   78篇
  2021年   114篇
  2020年   108篇
  2019年   165篇
  2018年   147篇
  2017年   143篇
  2016年   129篇
  2015年   129篇
  2014年   253篇
  2013年   311篇
  2012年   200篇
  2011年   211篇
  2010年   200篇
  2009年   229篇
  2008年   257篇
  2007年   233篇
  2006年   236篇
  2005年   185篇
  2004年   186篇
  2003年   177篇
  2002年   146篇
  2001年   106篇
  2000年   87篇
  1999年   109篇
  1998年   82篇
  1997年   87篇
  1996年   56篇
  1995年   82篇
  1994年   89篇
  1993年   71篇
  1992年   75篇
  1991年   47篇
  1990年   57篇
  1989年   36篇
  1988年   27篇
  1987年   29篇
  1986年   20篇
  1985年   55篇
  1984年   65篇
  1983年   57篇
  1982年   52篇
  1981年   24篇
  1980年   18篇
  1979年   17篇
  1978年   7篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
排序方式: 共有5263条查询结果,搜索用时 15 毫秒
211.
212.
213.
Alzheimer's disease is one of the most common causes of dementia. It is believed that the aggregation of short Aβ -peptides to form oligomeric and protofibrillar amyloid assemblies plays a central role for disease-relevant neurotoxicity. In recent years, passive immunotherapy has been introduced as a potential treatment strategy with anti-amyloid antibodies binding to Aβ -amyloids and inducing their subsequent degradation by the immune system. Although so far mostly unsuccessful in clinical studies, the high-dosed application of the monoclonal antibody Aducanumab has shown therapeutic potential that might be attributed to its much greater affinity to Aβ -aggregates vs monomeric Aβ -peptides. In order to better understand how Aducanumab interacts with aggregated Aβ -forms compared to monomers, we have generated structural model complexes based on the known structure of Aducanumab in complex with an Aβ2 − 7 -eptitope. Structural models of Aducanumab bound to full-sequence Aβ1 − 40 -monomers, oligomers, protofilaments and mature fibrils were generated and investigated using extensive molecular dynamics simulations to characterize the flexibility and possible additional interactions. Indeed, an aggregate-specific N-terminal binding motif was found in case of Aducanumab binding to oligomers, protofilaments and fibrils that is located next to but not overlapping with the epitope binding site found in the crystal structure with Aβ2 − 7 . Analysis of binding energetics indicates that this motif binds weaker than the epitope but likely contributes to Aducanumab's preference for aggregated Aβ -species. The predicted aggregate-specific binding motif could potentially serve as a basis to reengineer Aducanumab for further enhanced preference to bind Aβ -aggregates vs monomers.  相似文献   
214.
Myosin-binding protein C 3 (MYBPC3) variants are the most common cause of hypertrophic cardiomyopathy (HCM). HCM is a complex cardiac disorder due to its significant genetic and clinical heterogeneity. MYBPC3 variants genotype–phenotype associations remain poorly understood. We investigated the impact of two novel human MYBPC3 splice-site variants: V1: c.654+2_654+4dupTGG targeting exon 5 using morpholino MOe5i5; and V2: c.772+1G>A targeting exon 6 using MOe6i6; located within C1 domain of cMyBP-C protein, known to be critical in regulating sarcomere structure and contractility. Zebrafish MOe5i5 and MOe6i6 morphants recapitulated typical characteristics of human HCM with cardiac phenotypes of varying severity, including reduced cardiomyocyte count, thickened ventricular myocardial wall, a drastic reduction in heart rate, stroke volume, and cardiac output. Analysis of all cardiac morphological and functional parameters demonstrated that V2 cardiac phenotype was more severe than V1. Coinjection with synthetic human MYBPC3 messenger RNA (mRNA) partially rescued disparate cardiac phenotypes in each zebrafish morphant. While human MYBPC3 mRNA partially restored the decreased heart rate in V1 morphants and displayed increased percentages of ejection fraction, fractional shortening, and area change, it failed to revert the V1 ventricular myocardial thickness. These results suggest a possible V1 impact on cardiac contractility. In contrast, attempts to rescue V2 morphants only restored the ventricular myocardial wall hypertrophy phenotype but had no significant effect on impaired heart rate, suggesting a potential V2 impact on the cardiac structure. Our study provides evidence of an association between MYBPC3 exon-specific cardiac phenotypes in the zebrafish model providing important insights into how these genetic variants contribute to HCM disease.  相似文献   
215.
216.
217.
Metallothioneins (MTs), a superfamily of cysteine-rich proteins, perform multiple functions, such as maintaining homeostasis of essential metals, detoxification of toxic metals and scavenging of oxyradicals. In this study, the promoter region of a metallothionein (MT) gene from Bay scallop Argopecten irradians (designed as AiMT1) was cloned by the technique of genomic DNA walking, and the polymorphisms in this region were screened to find their association with susceptibility or tolerance to high temperature stress. One insert–deletion (ins–del) polymorphism and sixteen single nucleotide polymorphisms (SNPs) were identified in the amplified promoter region. Two SNPs, − 375 T–C and − 337 A–C, were selected to analyze their distribution in the two Bay scallop populations collected from southern and northern China coast, which were identified as heat resistant and heat susceptible stocks, respectively. There were three genotypes, T/T, T/C and C/C, at locus − 375, and their frequencies were 25%, 61.1% and 13.9% in the heat susceptible stock, while 34.2%, 42.1% and 23.7% in the resistant stock, respectively. There was no significant difference in the frequency distribution of different genotypes between the two stocks (P > 0.05). In contrast, at locus − 337, three genotypes A/A, A/C and C/C were revealed with the frequencies of 11.6%, 34.9% and 53.5% in the heat susceptible stock, while 45.7%, 32.6% and 21.7% in the heat resistant stock, respectively. The frequency of C/C genotype in the heat susceptible stock was significantly higher (P < 0.01) than that in the heat resistant stock, while the frequency of A/A in the heat resistant stock was significantly higher (P < 0.01) than that in the heat susceptible stock. Furthermore, the expression of AiMT1 mRNA in scallops with C/C genotype was significantly higher than that with A/A genotype (P < 0.05) after an acute heat treatment at 28 °C for 120 min. These results implied that the polymorphism at locus − 337 of AiMT1 was associated with the susceptibility/tolerance of scallops to heat stress, and the − 337 A/A genotype could be a potential marker available in future selection of Bay scallop with heat tolerance.  相似文献   
218.
219.
We reported previously that the expression of Wnt-related genes is lower in osteoporotic hip fractures than in osteoarthritis. We aimed to confirm those results by analyzing β-catenin levels and explored potential genetic and epigenetic mechanisms involved.  相似文献   
220.
Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号