首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   36篇
  国内免费   19篇
  633篇
  2023年   6篇
  2022年   12篇
  2021年   12篇
  2020年   13篇
  2019年   7篇
  2018年   21篇
  2017年   9篇
  2016年   14篇
  2015年   39篇
  2014年   45篇
  2013年   44篇
  2012年   19篇
  2011年   25篇
  2010年   27篇
  2009年   29篇
  2008年   28篇
  2007年   33篇
  2006年   28篇
  2005年   31篇
  2004年   34篇
  2003年   20篇
  2002年   12篇
  2001年   13篇
  2000年   19篇
  1999年   21篇
  1998年   12篇
  1997年   11篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
排序方式: 共有633条查询结果,搜索用时 0 毫秒
81.
82.
The adhesion of growing neurites into appropriate bundles or fascicles is important for the development of correct synaptic connectivity in the nervous system. We describe fasciculation defects of animals with mutations in the C. elegans gene dig-1 and show that dig-1 encodes a giant molecule (13,100 amino acids) of the immunoglobulin superfamily. Five new alleles of dig-1 were isolated in a screen for mutations affecting the morphology or function of several classes of head sensory neurons. Mutants showed process defasciculation of several classes of neurons. Analysis of a temperature-sensitive allele revealed that dig-1 is required during embryogenesis for normal process fasciculation of one class of head sensory neuron. Partial sequencing of two alleles, RNA interference (RNAi) and rescuing experiments showed that dig-1 encodes a giant molecule of the immunoglobulin superfamily. DIG-1 protein contains many domains associated with adhesion, is likely secreted, and has some features of proteoglycans. dig-1 mutants were originally isolated due to their displaced gonads [Thomas, J.H., Stern, M.J., Horvitz, H.R., 1990. Cell interactions coordinate the development of the C. elegans egg-laying system. Cell 62, 1041-52]; thus, dig-1 alleles were also characterized for their effects on gonad placement. Mutant phenotypes suggest that DIG-1 may mediate cell movement as well as process fasciculation and that different regions of the protein may mediate these functions.  相似文献   
83.
Transmembrane 4 superfamily (TM4SF) molecules are predominantly mammalian cell surface glycoproteins that are thought to transduce signals mediating cell development, activation, and motility. Analysis of the Genpept sequence database reveals YKK8, a novel member of the TM4SF in the nematode,Caenorhabditis elegans. YKK8 is a putative 27.4-kDa protein encoded by a gene on chromosome III of theC. elegans genome (Wilson et al. [1994]Nature 368:32–38). The assignment of YKK8 to the TM4SF is justified by three criteria: statistical comparison of protein sequences, conserved TM4SF protein sequence motifs, and conserved TM4SF intron/exon boundaries in the genomic sequence. The discovery of a TM4SF molecule in the nematode extends this superfamily to a more primitive branch of the phylogenetic tree and suggests a fundamental role for TM4SF molecules in biology. Correspondence to: M.G. Tomlinson  相似文献   
84.
Abstract: The F3 molecule is a member of the immunoglobulin superfamily anchored to plasma membranes by a glycosylphosphatidylinositol group. In adult mouse cerebellum, F3 is predominantly expressed on a subset of axons, the parallel fibers, and at their synapses. In vitro studies established that it is a plurifunctional molecule that, depending on the cellular context and the ligand with which it interacts, either mediates repulsive interactions or promotes neurite outgrowth. In the present study, we report the isolation of two fractions of F3-containing microdomains from adult cerebellum on the basis of their resistance to solubilization by Triton X-100 at 4°C. Both fractions were composed of vesicles, ranging from 100 to 200 nm in diameter. Lipid composition analysis indicated that the lighter fraction was enriched in cerebrosides and sulfatides. F3 sensitivity to phosphatidylinositol phospholipase C differed between the two fractions, possibly reflecting structural differences in the lipid anchor of the F3 molecule. Both fractions were highly enriched in other glycosylphosphatidylinositol-anchored proteins such as NCAM 120 and Thy-1. It is interesting that these vesicles were devoid of the transmembrane forms (NCAM 180 and NCAM 140), which were recovered in Triton X-100-soluble fractions, but contained the L1 transmembrane adhesion molecule that is coexpressed with F3 on parallel fibers and the fyn tyrosine kinase. Immunoprecipitation experiments indicated that F3, but not NCAM 120 or Thy-1, was physically associated in a complex with both L1 and fyn tyrosine kinase. This strongly suggests that the interaction between L1 and F3, already described to occur with isolated molecules, is present in neural tissue. More important is that our study provides information on the molecular machinery likely to be involved in F3 signaling.  相似文献   
85.
86.
Xiang P  Haas EJ  Zeece MG  Markwell J  Sarath G 《Planta》2004,220(1):56-63
Gly m Bd 28 K is a major soybean (Glycine max Merr.) glycoprotein allergen. It was originally identified as a 28 kDa polypeptide in soybean seed flour. However, the full-length protein is encoded by an open reading frame (ORF) of 473 amino acids, and contains a 23 kDa C-terminal polypeptide of as yet unknown allergenic and structural characteristics. IgE-binding (allergenic potential) of the Gly m Bd 28 K protein including the 23 kDa C-terminal portion as well as shorter fragments derived from the full-length ORF were evaluated using sera from soy-sensitive adults. All of these sera contained IgE that efficiently recognized the C-terminal region. Epitope mapping demonstrated that a dominant linear C-terminal IgE binding epitope resides between residues S256 and A270. Alanine scanning of this dominant epitope indicated that five amino acids, Y260, D261, D262, K264 and D266, contribute most towards IgE-binding. A model based on the structure of the subunit of soybean -conglycinin revealed that Gly m Bd 28 K contains two cupin domains. The dominant epitope is on the edge of the first -sheet of the C-terminal cupin domain and is present on a potentially solvent-accessible loop connecting the two cupin domains. Thus, the C-terminal 23 kDa polypeptide of Gly m Bd 28 K present in soy products is allergenic and apparently contains at least one immunodominant epitope near the edge of a cupin domain. This knowledge could be helpful in the future breeding of hypoallergenic soybeans.Abbreviations Ara h 1 Arachis hypogaea allergen 1 - Ara h 3 Arachis hypogaea allergen 3 - BCA Bicinchoninic acid - Gly m Bd 28 K Glycine max band 28 kDa allergen - Gly m Bd 30 K Glycine max band 30 kDa allergen - Gly m Bd 68 K Glycine max band 68 kDa allergen - IgE Immunoglobulin E  相似文献   
87.
We present an automated method incorporated into a software package, FOLDER, to fold a protein sequence on a given three-dimensional (3D) template. Starting with the sequence alignment of a family of homologous proteins, tertiary structures are modeled using the known 3D structure of one member of the family as a template. Homologous interatomic distances from the template are used as constraints. For nonhomologous regions in the model protein, the lower and the upper bounds for the interatomic distances are imposed by steric constraints and the globular dimensions of the template, respectively. Distance geometry is used to embed an ensemble of structures consistent with these distance bounds. Structures are selected from this ensemble based on minimal distance error criteria, after a penalty function optimization step. These structures are then refined using energy optimization methods. The method is tested by simulating the alpha-chain of horse hemoglobin using the alpha-chain of human hemoglobin as the template and by comparing the generated models with the crystal structure of the alpha-chain of horse hemoglobin. We also test the packing efficiency of this method by reconstructing the atomic positions of the interior side chains beyond C beta atoms of a protein domain from a known 3D structure. In both test cases, models retain the template constraints and any additionally imposed constraints while the packing of the interior residues is optimized with no short contacts or bond deformations. To demonstrate the use of this method in simulating structures of proteins with nonhomologous disulfides, we construct a model of murine interleukin (IL)-4 using the NMR structure of human IL-4 as the template. The resulting geometry of the nonhomologous disulfide in the model structure for murine IL-4 is consistent with standard disulfide geometry.  相似文献   
88.
89.
Diverse proteins that are 35% to 55% identical to actins have been discovered recently in yeasts, nematodes, and vertebrates. In order to study these proteins systematically and relate their functions to those of conventional actins, we are isolating the corresponding genes from the genetically tractable eukaryote,Drosophila melanogaster. Here we report the isolation and partial characterization of aDrosophila homologue of theSchizosaccharomyces pombe act2 gene. Degenerate oligonucleotide primers specifying peptides that are highly conserved within the actin protein superfamily were used in conjunction with polymerase chain reaction (PCR) to amplify a portion of theDrosophila gene that we have namedactr66B. The corresponding full-length cDNA sequence encodes a protein of 418 residues that is 65% identical to the product of theS. pombe act2 gene, 80% identical to the bovineact2 homologue, but only 48% identical to the principalDrosophila cytoplasmic actin encoded by theAct5C actin gene. Alignment of the yeast, bovine, andDrosophila actin-related proteins shows that they have four peptide insertions, relative to conventional actins, three of which are well placed to modify actin polymerization and one that is likely to perturb the binding of myosin. Locations of two of the fiveactr66B introns are conserved betweenDrosophila and yeast genes, further attesting that they evolved from a common ancestor and are likely to encode proteins having similar functions. We demonstrate that theDrosophila gene is located on the left arm of chromosome 3, within subdivision 66B. Finally, we show by RNA blot-hybridization that the gene is expressed at low levels, relative to conventional nonmuscle actin, in all developmental stages. From these and other observations we infer that the actr66B protein is a minor component of all cells, perhaps serving to modify the polymerization, structure, and dynamic behavior of actin filaments. Our work was supported by grants from the NIH and the Muscular Dystrophy Association to E.A.F. Sequences described herein have been filed in the GenBank Database under Accession Number X71789.  相似文献   
90.
细菌的肽转运蛋白包括3种,寡肽转运蛋白(Oligopeptide permease,Opp)、二肽转运蛋白(Dipeptide permease,Dpp)和二/三肽转运蛋白(Di-and tripeptide permease,Dtp)。Opp和Dpp属于ABC型超家族(ATP-binding cassette superfamily)转运蛋白,利用ATP水解产生的能量实现底物转运。对Opp和Dpp研究最多的是胞外肽结合蛋白OppA和DppA,它们起着最初识别与结合底物的重要作用。Dtp属于主要协助转运蛋白超家族(Major facilitator superfamily,MFS),与质子进行底物共转运。细菌肽转运蛋白的晶体结构解析结合大量的生化数据分析,使得人们对其转运机制有了深入的了解。本文对这三种肽转运蛋白的研究进展分别进行综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号