首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2784篇
  免费   304篇
  国内免费   130篇
  2024年   4篇
  2023年   28篇
  2022年   63篇
  2021年   74篇
  2020年   74篇
  2019年   71篇
  2018年   81篇
  2017年   48篇
  2016年   104篇
  2015年   121篇
  2014年   112篇
  2013年   139篇
  2012年   75篇
  2011年   183篇
  2010年   155篇
  2009年   160篇
  2008年   167篇
  2007年   185篇
  2006年   175篇
  2005年   215篇
  2004年   174篇
  2003年   139篇
  2002年   134篇
  2001年   48篇
  2000年   54篇
  1999年   55篇
  1998年   57篇
  1997年   43篇
  1996年   28篇
  1995年   36篇
  1994年   45篇
  1993年   28篇
  1992年   25篇
  1991年   11篇
  1990年   12篇
  1989年   12篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   12篇
  1984年   17篇
  1983年   13篇
  1982年   10篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有3218条查询结果,搜索用时 31 毫秒
91.
Human cytosolic aspartyl‐tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi‐tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C‐terminal end of the N‐helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N‐helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post‐translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions.Proteins 2013; 81:1840–1846. © 2013 Wiley Periodicals, Inc.  相似文献   
92.
The effects of cavity‐creating mutations on the structural flexibility, local and global stability, and dynamics of the folded state of staphylococcal nuclease (SNase) were examined with NMR spectroscopy, MD simulations, H/D exchange, and pressure perturbation. Effects on global thermodynamic stability correlated well with the number of heavy atoms in the vicinity of the mutated residue. Variants with substitutions in the C‐terminal domain and the interface between α and β subdomains showed large amide chemical shift variations relative to the parent protein, moderate, widespread, and compensatory perturbations of the H/D protection factors and increased local dynamics on a nanosecond time scale. The pressure sensitivity of the folded states of these variants was similar to that of the parent protein. Such observations point to the capacity of the folded proteins to adjust to packing defects in these regions. In contrast, cavity creation in the β‐barrel subdomain led to minimal perturbation of the structure of the folded state, However, significant pressure dependence of the native state amide resonances, along with strong effects on native state H/D exchange are consistent with increased probability of population of excited state(s) for these variants. Such contrasted responses to the creation of cavities could not be anticipated from global thermodynamic stability or crystal structures; they depend on the local structural and energetic context of the substitutions. © 2012 Wiley Periodicals, Inc.  相似文献   
93.
Aldehyde dehydrogenases are found in all organisms and play an important role in the metabolic conversion and detoxification of endogenous and exogenous aldehydes. Genomes of many organisms including Escherichia coli and Salmonella typhimurium encode two succinate semialdehyde dehydrogenases with low sequence similarity and different cofactor preference (YneI and GabD). Here, we present the crystal structure and biochemical characterization of the NAD(P)+‐dependent succinate semialdehyde dehydrogenase YneI from S. typhimurium. This enzyme shows high activity and affinity toward succinate semialdehyde and exhibits substrate inhibition at concentrations of SSA higher than 0.1 mM. YneI can use both NAD+ and NADP+ as cofactors, although affinity to NAD+ is 10 times higher. High resolution crystal structures of YneI were solved in a free state (1.85 Å) and in complex with NAD+ (1.90 Å) revealing a two domain protein with the active site located in the interdomain interface. The NAD+ molecule is bound in the long channel with its nicotinamide ring positioned close to the side chain of the catalytic Cys268. Site‐directed mutagenesis demonstrated that this residue, as well as the conserved Trp136, Glu365, and Asp426 are important for activity of YneI, and that the conserved Lys160 contributes to the enzyme preference to NAD+. Our work has provided further insight into the molecular mechanisms of substrate selectivity and activity of succinate semialdehyde dehydrogenases. © 2012 Wiley Periodicals, Inc.  相似文献   
94.
This paper presents theory and simulation of flow-induced structures in liquid crystalline materials, useful to the creation of synthetic material structures and to the biomimetics of natural fibers. A multiscale theory and simulation of hydrodynamic texture formation is presented; it provides fundamental principles for control and optimization of structures in liquid crystal polymers and carbonaceous mesophases. In thermotropic flow-aligning nematic polymers it is found that as the shear-rate increases, the pathway between an oriented non-planar state and an oriented planar state is through meso-texture formation and coarsening, with temperature and shear rate being efficient fields to control the grain size of the texture. For capillary flow of carbonaceous mesophases, the simulations predict the emergence of macroscopic ring patterns whose thickness and density can be controlled by the applied pressure drops. The results provide insight on microstructure formation and control in liquid crystalline materials.  相似文献   
95.
The Gaussian density molecular model has been adapted for dissipative particle dynamics. The model, when combined with a soft potential, is shown to be a very flexible mesoscale model exhibiting a wide range of phase behaviour. The soft potential allows relatively large time steps to be used and hence a more rapid equilibration. In addition, the model can be used to study both uniaxial and biaxial systems. We have undertaken a number of pilot studies and have demonstrated that the Gaussian model is able to identify nematic–isotropic phase transitions in liquid crystals and the formation of ordered discotic phases.  相似文献   
96.
Graphics processing unit (GPU) is becoming a powerful computational tool in science and engineering. In this paper, different from previous molecular dynamics (MD) simulation with pair potentials and many-body potentials, two MD simulation algorithms implemented on a single GPU are presented to describe a special category of many-body potentials – bond order potentials used frequently in solid covalent materials, such as the Tersoff potentials for silicon crystals. The simulation results reveal that the performance of GPU implementations is apparently superior to their CPU counterpart. Furthermore, the proposed algorithms are generalised, transferable and scalable, and can be extended to the simulations with general many-body interactions such as Stillinger–Weber potential and so on.  相似文献   
97.
In order to investigate the ordered structure of nematic liquid crystal molecules confined in a nanoslit, we carried out a classical molecular dynamics simulation of uniaxial prolate Gay–Berne particles in a flat, structureless slit at several temperatures. When the slit gap is so small that the system is not assumed as the bulk, particles in the slit possess orientationally ordered structures different from ones in the bulk. The weak spacial orientational correlation existed when the temperature corresponded to the isotropic phase in the bulk system. The first order isotropic–nematic phase transition was not clearly observed and the transitional phenomenon of the creation and annihilation of the uniaxial domains were observed. These results revealed that the ordered structure depends on the number of particles, in other words, cell size, and that the system with 100,000 or more particles gives reasonable results of an infinitely wide slit. The number of particles is converted into up to 220 particles of the length of the base.  相似文献   
98.
Abstract

We present a “force-biased” algorithm for generating the irregular close packing of hard spheres. The algorithm is partly based on Jodrey and Tory's ideas [9] and incorporates methods from Molecular Dynamics. Packings generated by means of the two algorithms are consistent up to final packing fraction of 0.65, which seems to be the limit density of Jodrey and Tory's method. Significantly higher densities (up to 0.71) can be achieved for small numbers of spheres by the force-biased algorithm. However the shape of the radial and angle distribution functions implies that a partial short-range ordering occurs in packings of those densities.  相似文献   
99.
Yangmin Ma  Hao Wu  Jin Zhang  Yanchao Li 《Chirality》2013,25(10):656-662
A series of single isomers tetrahydro‐β‐carboline diketopiperazines were stereoselectively synthesized starting from l ‐tryptophan methyl ester hydrochloride and six aldehydes through a four‐step reaction including Pictet‐Spengler reaction, crystallization‐induced asymmetric transformations (CIAT), Schotten‐Baumann reaction, and intramolecular ester amidation. The chemical structures were characterized by nuclear magnetic resonance (NMR) and elemental analysis, among which two compounds were determined by x‐ray single crystal diffraction. Moreover, antimicrobial activities of all the compounds were also tested. Chirality 25:656–662, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
100.
Polycystin-2 (PC2) trafficking has been proposed to be a result of the interaction of PIGEA14 with PC2 as a function of the phosphorylation state of PC2. Here, we investigated the interaction of PIGEA14 with the C-terminal part of polycystin-2 wild type (cPC2wt) and the pseudophosphorylated mutant (cPC2S812D) to first, quantify the binding affinity between cPC2 and PIGEA14 and second, to elucidate the influence of PC2 phosphorylation on PIGEA14 binding. Solid supported membranes composed of octanethiol/1,2-dioleoyl-sn-glycero-3-phosphocholine doped with the receptor lipid DOGS–NTA–Ni were used to attach PIGEA14 to the membrane via its hexahistidine tag. By means of the quartz crystal microbalance technique, binding affinities as well as kinetic constants of the interaction were extracted in a label-free manner by applying the scaled particle theory. The results show that the dissociation constant of cPC2 to PIGEA14 is in the 10 nM regime providing strong evidence of a very specific interaction of cPC2 with PIGEA14. The interaction of cPC2wt is twofold larger than that of cPC2S812D. The moderate higher binding affinity of cPC2wt to PIGEA14 is discussed in light of PC2 trafficking to the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号