首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   15篇
  国内免费   17篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2020年   18篇
  2019年   23篇
  2018年   17篇
  2017年   12篇
  2016年   16篇
  2015年   11篇
  2014年   29篇
  2013年   15篇
  2012年   28篇
  2011年   31篇
  2010年   26篇
  2009年   30篇
  2008年   16篇
  2007年   19篇
  2006年   29篇
  2005年   22篇
  2004年   20篇
  2003年   20篇
  2002年   15篇
  2001年   15篇
  2000年   19篇
  1999年   19篇
  1998年   17篇
  1997年   7篇
  1996年   10篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
排序方式: 共有603条查询结果,搜索用时 31 毫秒
111.
Semen cryopreservation is fundamental both for the practice of artificial insemination, and for the conservation of genetic resources in cryobanks; nevertheless, there is still not an efficient standard freezing procedure assuring a steady and suitable level of fertility in fowl, and consequently there is no systematic use of frozen semen in the poultry industry. This study examined changes in motility (CASA), cell membrane integrity (Ethidium Bromide (EtBr) exclusion procedure and stress test) and DNA fragmentation (neutral comet assay) in fowl spermatozoa before, during and after cryopreservation and storage at −196 °C. An optimized comet assay for chicken semen was studied and applied to the analyses. Semen collected from 18 Mericanel della Brianza (local Italian breed) male chicken breeders was frozen in pellets and thawed in a water bath at 60 °C. Measurements were performed on fresh semen soon after dilution, after equilibration with 6% dimethylacetamide at 4 °C (processed semen) and after thawing. Sperm DNA damage occurred during cryopreservation of chicken semen and the proportion of spermatozoa with damaged DNA significantly increased from 6.2% in fresh and 6.4% in processed semen to 19.8% in frozen-thawed semen. The proportion of DNA in the comet tail of damaged spermatozoa was also significantly affected by cryopreservation, with an increase found from fresh (26.3%) to frozen-thawed (30.9%) sperm, whereas processed semen (30.1%) didn't show significant differences. The proportion of total membrane damaged spermatozoa (EtBr exclusion procedure) did not increase by 4 °C equilibration time, and greatly and significantly increased by cryopreservation; the values recorded in fresh, processed and frozen semen were 2.9, 5.6, and 66.7% respectively. As regards the proportion of damaged cells in the stress test, all values differed significantly (7.1% fresh semen, 11.7% processed semen, 63.7% frozen semen). Total motility was not affected by equilibration (52.1% fresh semen, 51.9% processed semen), whereas it decreased significantly after cryopreservation (19.8%). These results suggest a low sensitivity of frozen-thawed chicken spermatozoa to DNA fragmentation, therefore it should not be considered as a major cause of sperm injuries during cryopreservation.  相似文献   
112.
The objective was to evaluate the suitability of using natural or lyophilized low density lipoproteins (LDL), in lieu of whole egg yolk, in extenders for cryopreserving ram semen. Once extragonadal sperm reserves were depleted in 10 fertile Santa Inês cross rams, two ejaculates per ram were collected for cryopreservation. Nine extenders were used: Tris-16% egg yolk extender with 5% glycerol as a control (T1), and substitution of whole egg yolk with 8, 12, 16 or 20% natural LDL (T2-T5, respectively), or with 8, 12, 16, or 20% lyophilized LDL (T6-T9). Semen was diluted to 100 × 106 sperm/mL, packaged into 0.25 mL straws, cooled, held at 5 °C for 3 h, and then frozen in liquid nitrogen vapor. Immediately after thawing (37 °C for 30 s), sperm total and progressive motility, and kinetic parameters were analyzed with computer assisted semen analysis (CASA). Percentage of sperm with plasma membrane functional integrity was assessed by the hypoosmotic swelling test (HOST), sperm membrane physical integrity with propidium iodide (PI), and acrosome integrity with FITC-PSA using an epifluorescent microscope. For all sperm end points, there was no difference between the control and natural LDL treatments (P > 0.05): total motility (T1: 20.9 ± 11.9 and average of T2-T5: 25.9 ± 13.6%; mean ± SD), progressive motility (T1: 6.6 ± 4.2 and average of T2-T5: 11.7 ± 7.5%), HOST+ (T1: 23.7 ± 6.9 and average of T2-T5: 23.2 ± 8.7 %) and PI/PSA (T1: 13.8 ± 7.8 and average of T2-T5: 18.1 ± 7.8%). However, lyophilization was apparently unable to preserve the protective function of LDL; every sperm end point was significantly worse than in the control and natural LDL groups. We concluded that natural LDL was appropriate for cryopreserving ram semen, as it yielded results similar to those obtained with whole egg yolk.  相似文献   
113.
Ping S  Wang F  Zhang Y  Wu C  Tang W  Luo Y  Yang S 《Theriogenology》2011,76(1):39-46
Cryopreservation of sperm from tree shrews, which are considered primitive primates, would enhance genetic management and breeding programs. Epididymal sperm were surgically harvested from male tree shrews, cryopreserved in two Tes-Tris-based cryodiluents, and used in four experiments. In Experiment 1, there were no significant differences in motility and acrosome integrity among five concentrations of egg yolk in TTE after cooling to 4 °C. However, sperm frozen in TTE containing 20% egg yolk at −172 °C/min had better (P < 0.05) post-thaw motility and acrosome integrity. In Experiment 2, sperm held for 10 min prior to storage in liquid nitrogen had greater motility than those held for 5 or 15 min (P < 0.05), but acrosome integrity was not different (P > 0.05) among treatments. In Experiment 3, sperm frozen in TTE diluent had higher (P < 0.05) motility and acrosome integrity than those in TEST diluent. In Experiment 4, there were no differences (P > 0.05) in the fertilization rate of oocytes and the proportion of tree shrews yielding fertilized oocytes, following AI with fresh versus frozen sperm. In conclusion, tree shrew epididymal sperm were successfully cryopreserved, as assessed by post-thaw motility, acrosome integrity, and fertilizing ability.  相似文献   
114.
The objective was to evaluate the effects of various antioxidants and duration of pre-freezing equilibration on cryopreservation of ram semen. Semen samples from four rams were pooled, diluted with Tris-egg yolk extender without antioxidants (control), or supplemented with reduced glutathione (GSH: 0.5, 1.0, and 2.0 mM), superoxide dismutase (SOD: 5, 10, and 20 U/mL), or catalase (CAT: 5, 10, and 20 U/mL), and cryopreserved, immediately after thermal equilibrium was reached at 5 °C (0 h), or 12 or 24 h after equilibration. Total antioxidant capacity was determined in the in natura extenders and after addition of semen samples for various durations of processing (fresh/dilute, throughout refrigeration, and post-thaw). Plasma membrane (PI-CFDA), acrosome integrity (FITC-PNA), and mitochondrial membrane potential (JC-1) were determined in fresh/diluted, refrigerated, and post-thaw samples. Post-thaw sperm motility was assessed with a computerized analysis system (CASA). There were no significant differences in acrosome damage or mitochondrial membrane potential after refrigeration and freeze-thaw, regardless of antioxidant addition. Sperm plasma membrane integrity was worse (P < 0.05) with cryopreservation immediately after equilibration (average 20.1 ± 8.3; mean ± SD) than after 12 h of equilibration (average 42.5 ± 10.9); however, the addition of SOD and CAT (10 and 20 U/mL) resulted in no significant difference between post-equilibration intervals of 0 and 12 h. Total antioxidant activity was not different (P > 0.05) among treatments after sperm addition or throughout the refrigeration and post-thaw. In conclusion, adding GSH, SOD or CAT did not increase the total antioxidant capacity of semen, nor did it enhance the quality of the post-thaw sperm. However, maintenance of ram semen at 5 °C for 12 h prior to cryopreservation reduced membrane damage of frozen-thawed sperm.  相似文献   
115.
The objective was to develop a method for cryopreserving microencapsulated canine sperm. Pooled ejaculates from three beagle dogs were extended in egg yolk tris extender and encapsulated using alginate and poly-L-lysine at room temperature. The microcapsules were cooled at 4 °C, immersed in pre-cooled extender (equivalent in volume to the microcapsules) to reach final concentration of 7% (v/v) glycerol and 0.75% (v/v) Equex STM paste, and equilibrated for 5, 30 and 60 min at 4 °C. Thereafter, microcapsules were loaded into 0.5 mL plastic straws and frozen in liquid nitrogen. In Experiment 1, characteristics of microencapsulated canine sperm were evaluated after glycerol addition at 4 °C. Glycerol exposure for 5, 30 and 60 min did not significantly affect progressive motility, viability, or acrosomal integrity of microencapsulated sperm compared with pre-cooled unencapsulated sperm (control). In Experiment 2, characteristics of frozen-thawed canine microencapsulated sperm were evaluated at 0, 3, 6, and 9 h of culture at 38.5 °C. Pre-freeze glycerol exposure for 5, 30, and 60 min at 4 °C did not influence post-thaw quality in unencapsulated sperm. Post-thaw motility and acrosomal integrity of microencapsulated sperm decreased more than those of unencapsulated sperm (P < 0.05) following glycerol exposure for 5 min. However, motility, viability and acrosomal integrity of microencapsulated sperm after 30 and 60 min glycerol exposure were higher than unencapsulated sperm cultured for 6 or 9 h (P < 0.05). In conclusion, since microencapsulated canine sperm were successfully cryopreserved, this could be a viable alternative to convention sperm cryopreservation in this species.  相似文献   
116.
MethodsWater relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra).ConclusionsQuercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas.  相似文献   
117.
Jing Yuan 《Proteomics》2014,14(2-3):155-156
Cryopreservation is widely used in many assisted conception units. Semen cryopreservation is the only proven method that offers many couples the chance to have children. However, spermatozoa are exposed to physical and chemical stressors during freezing and thawing that result in adverse changes in membrane lipid composition, sperm motility, viability, and acrosome status. Wang et al. (Proteomics 2014, 14, 298–310) evaluate the protein content of freeze‐thawed sperm samples relative to that of fresh sperm samples from the same normozoospermic donors. Four proteins are verified via Western blot and immunofluorescent staining, which are putatively involved in spermatozoon dysfunction. These marked differences demonstrated by Wang et al. suggest that dysfunctional spermatozoon after cryopreservation may be due to protein degradation and protein phosphorylation.  相似文献   
118.
The cell culture ofAngelica gigas Nakai producing decursin derivatives and immunostimulating polysaccharides was preserved in liquid nitrogen after pre-freezing in a deep freezer at −70°C for 480 min. The effects of the cryoprotectant and pretreatment before cooling were investigated to obtain the optimal procedure for cyropreservation. When compared to mannitol, sorbitol, or NaCl with a similar osmotic pressure, 0.7M sucrose was found to be the best osmoticum for the cryopreservation ofA. gigias cells. In the pre-culture medium, the cells in the exponential growth phase showed the best post-freezing survival after cryopre-servation. A mixture of sucrose, glycerol, and DMSO was found to be an effective cryoprotectant and a higher concentration of the cryoprotectant provided better cell viability. When compared with the vitrification, the optimum cryopreservation method proposed in this study would seem to be more effective for the long-term storage of suspension cells. The highest relative cell viability established with the optimal procedure was 89%.  相似文献   
119.
Summary The present study was undertaken to define the conditions for optimal cryopreservation of hepatocytes. Two different freezing procedures were analyzed: a slow freezing rate (SFR) (−2° C/min down to −30°C and then quick freezing to −196° C) and a fast freezing rate (FFR) (direct freezing of tubes to −196° C: −39° C/min). Cells were frozen in fetal bovine serum containing 10% Dimethyl sulfoxide (DMSO). After rapid thawing at 37° C, followed by dilution and removal of the cryoprotectant, cells were plated and several parameters were followed as criteria for optimal cryopreservation of cells. The FFR cells showed no apparent ultrastructural damage after 24 h of culture. Plating efficiency and spreading were similar as controls. Gluconeogenesis from pyruvate and fructose, tyrosine amino transferase induction by glucagon and dexamethasone, urea production, and plasma protein synthesis of FFR cells were similar to those found in control cultures. The FFR procedure, in comparison to the SFR method, seemed to render the best preserved hepatocytes. The financial support for this work was from Fondo de Investigaciones Sanitarias de la Seguridad Social, Grants 41/82 and 48/82.  相似文献   
120.
A simple systems for in vitro storage of health asparagus germplasm was developed. High percent (90 %) of shoots cultured in a standard multiplication medium were maintained viable in vitro at 5 °C in darkness for 12 months. This percent was decreased to 60 % when cultures were stored for 18 months. At normal temperature, shoots and callus cultures also survived for 1 year under osmotic stress on medium containing 40 g dm-3 mannitol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号