首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2745篇
  免费   150篇
  国内免费   84篇
  2024年   7篇
  2023年   33篇
  2022年   24篇
  2021年   25篇
  2020年   55篇
  2019年   55篇
  2018年   39篇
  2017年   62篇
  2016年   65篇
  2015年   70篇
  2014年   84篇
  2013年   172篇
  2012年   76篇
  2011年   73篇
  2010年   53篇
  2009年   100篇
  2008年   114篇
  2007年   86篇
  2006年   108篇
  2005年   107篇
  2004年   69篇
  2003年   82篇
  2002年   80篇
  2001年   62篇
  2000年   61篇
  1999年   54篇
  1998年   66篇
  1997年   48篇
  1996年   48篇
  1995年   58篇
  1994年   61篇
  1993年   45篇
  1992年   50篇
  1991年   30篇
  1990年   57篇
  1989年   59篇
  1988年   44篇
  1987年   51篇
  1986年   57篇
  1985年   49篇
  1984年   85篇
  1983年   29篇
  1982年   47篇
  1981年   52篇
  1980年   48篇
  1979年   45篇
  1978年   38篇
  1977年   37篇
  1976年   37篇
  1975年   14篇
排序方式: 共有2979条查询结果,搜索用时 62 毫秒
151.
Zoospores of 17 species in 14 genera of Laminariales, collected in the northeast Pacific Ocean, were studied by electron microscopy. These zoospores are unique in the brown algae in lacking both an eyespot in the single chloroplast and any associated swelling at the base of the shorter, posterior flagellum. Spores of all species examined possess a distal whiplash portion on the longer, mastigoneme-bearing anterior flagellum. This appendage may sometimes be as long as the mastigoneme-bearing portion of the flagellum, but it is only seldom preserved in the preparations for electron microscopy. A microtubular cytoskeleton is probably responsible for maintaining the shape of the spore. It consists of a short band of about 10 microtubules between the two basal bodies, scattered tubules converging at the anterior of the spore, a band of 7–9 tubules directed anteriorly from the anterior basal body, and a band directed posteriorly from the posterior basal body. These anterior and posterior bands may form one continuous band looping around the periphery of the spore. Variation with possible taxonomic significance was found in the ultrastructure of vesicles which apparently contain adhesive material, and which are extruded through the plasmalemma when the zoospores settle.  相似文献   
152.
The morphology and distribution of a variety of types of nucleus in the apex, in young and mature gametangia, and in older regions of the Cymopolia cell were studied by light and electron microscopy. Spherical and convoluted nuclei 2–7μm in diameter were observed in apical regions of the vegetative siphon. Nuclei 4 μm in diameter were present in the young primary laterals and in developing gametangia. A single characteristic nucleus migrates from the siphon into the primary lateral of the second basipetal whorl. It is further transported into one of several possible secondary laterals and determines the development of gametangia which become multinucleate in the fourth or fifth whorls. Nuclei are characterized by size, shape, nucleolar morphology, nucleoplasmic inclusions and the ultrastructure of the perinuclear cytoplasm. Although no “primary nucleus” characteristic of the uninucleate genera, Acetabularia and Batophora was observed, some nuclei of Cymopolia have features in common with secondary nuclei of these genera.  相似文献   
153.
The ultrastructure of sperm from 13 species in 11 genera of Laminariales collected in the northeast Pacific Ocean is unique in the brown algae. The sperm are elongate, and possess a nucleus, several mitochondria and two or three chloroplasts, but no eyespot. The anterior flagellum bears mastigonemes on the proximal half of its length; a distal “whiplash” portion lacks mastigonemes and is an extension of only the two central singlet microtubules of the axoneme. A peculiar feature of these sperm is the posterior flagellum, which is longer than the anterior flagellum and tapers distally as the doublet microtubules become singlets and decrease in number. This feature contrasts with the laminarialean zoospore, which possesses a short posterior flagellum with the usual “9 + 2” axoneme. The structure of these sperm differs from that reported for Chorda, the sperm of which resembles a primitive brown algal zoospore. The facts support the concept that Chorda is the most primitive member of the Laminariales.  相似文献   
154.
This study analyzes the impact of conditions associated with depth upon benthic algal communities in Lake Michigan. Diatom abundance was greater at 9.1 and 14.6 m depths than 6.5, 22.6 and 27.4 m. Shallow (6.5 m), mid-depth (9.1 and 14.6 m) and deep (22.6 and 27.4 m) zones were distinguishable on the basis of community composition, structure and abundance. Dominance of benthic species, high diversity and low abundance in shallow communities probably resulted from substantial substrate disturbance by wave action in this productive zone. Dominance of benthic species, high diversity and high abundance characterized mid-depth communities where less wave disturbance enabled algal accumulation. Preponderance of living planktonic taxa, low diversity and low abundance delineated deep communities where planktonic algae accumulated and low light levels reduced growth of benthic species.  相似文献   
155.
Continuous cultures of Merismopedia tenuissima Lemmerman, limited by phosphorus, nitrogen, sulfur, or carbon, were compared to non limited batch cultures by two methods. The cellular content of photosynthetic pigments (chlorophyll and phycocyanin) was found to decrease in all nutrient limited cultures, except for the carbon limited culture. The ratio of carbohydrate to protein was 4- to 7-fold higher in P, N or S limited cultures than in non-limited or C limited cultures. The macromolecular products of photosynthesis were determined in samples to which NaH14CO3 was added. Relative incorporation into protein decreased in P or N limited cultures, increased accumulation of low molecular weight compounds was found in S and P limited cultures, and little change was noted in C limited cultures as compared to non-limited cultures. Although relative incorporation into protein was significantly greater at 20μEin·m?2·s?1 light intensity than at 180 μEin·m?2.s?1 in non-limited cultures, this effect was abolished in all nutrient limited cultures. These results suggest that measurement of the cellular carbohydrate to protein ratio and the products of photosynthesis would be useful in the analysis of algal population dynamics in nature.  相似文献   
156.
A “planted core” system was developed to test the effect of short term (1–2 weeks) experimental manipulation of environmental parameters on edaphic microalgae under field conditions. A large number of small cores (surface area = 7 cm2) were collected, randomized and replanted in the marsh in fiddler crab exclosures with appropriate experimental treatments. Daily enrichment of the cores with NH4+ resulted in significant increases in edaphic primary productivity and levels of chlorophyll a in both summer and winter seasons in the short-Spartina marsh. Enrichment with a complete nutrient solution caused no further increases. Nutrient enrichment of creekbank sediments was much less stimulatory to the resident algal assemblage. In both sites, but especially in the creekbank, the removal of fiddler crab grazers resulted in significant increases in chlorophyll a and productivity. Experimental manipulation of light intensity showed that the average light intensity reaching the sediment surface was saturating for chlorophyll production in the short-Spartina marsh. A reciprocal transplant experiment involving unfertilized cores from the short-Spartina marsh and creekbank marsh demonstrated that NH4+ inputs occurring in the creekbank site rapidly alleviated nitrogen limitation of edaphic algae from short-Spartina marsh. Algae in creekbank cores incubated in the short-Spartina marsh were unable to sustain high productivity once the original standing stock of NH4+ declined.  相似文献   
157.
Ferredoxins were isolated from the freshwater red alga Porphyridium aerugineut, and from Porphyridium cruentum, a related marine species. A sin  相似文献   
158.
The photosynthetic activity of different algal communities at the outer edge of an Equisetum fluviatile L. stand in an oligotrophic lake (Pääjärvi, in southern Finland) was investigated. Production by the algal communities was measured simultaneously using a modified 14C-method, and the results were related to the volume of algae and the available irradiance. The relative production rate (P/B quotient) of phytoplankton was ca. 3 × that of epiphyton and ca. 20 × that of epipelon. Epiphyton productivity remained almost constant although the algal volume varied greatly, suggesting that the surface layer of the algal community was mainly responsible for the photosynthetic activity. In the littoral area (at 1 m depth) primary production/m2 of lake surface by phytoplankton, epiphyton and epipelon was similar but in the littoriprofundal area (2–4 m) phytoplankton production was twice that of epipelon. Primary productivity of epiphyton and epipelon/m2 of substratum was about equal to phytoplankton productivity/m3 of water at the same irradiance. This relation provided a means of estimating the relative contributions of the different algal communities to the total algal production in the lake.  相似文献   
159.
The capacity of thermal algal-bacterial mats to fix nitrogen (N2) was examined in an alkaline thermal stream, Rabbit Creek, of Yellowstone National Park. Nitrogenase activity and nitrogen-fixation rates of mat cores placed in serum bottles and incubated in situ were estimated by the acetylene-reduction technique. Active nitrogenase was not detected at 60 or 65 C in either the blue-green algal or bacterial undermat components of the mats. Acetylene was reduced by all mats ≤55 C along the thermogradient; mean fixation estimates for the mats ranged from 7 to 5,028 nmoles N2 fixed · mg Chl a?1· hr?1. Maximum fixation occurred at 35 C in the stream; statistical comparison of mean rates ordered the thermogradient mats according to estimated activities: 35 > 40 > 30 > 50 ≥ 55 ≥ 45 C. Mats (≤40 C) dominated by species of Calothrix accounted for ca. 97% of the total nitrogen fixation observed in the stream; the remaining activity was associated with mats containing Mastigocladus laminosus Cohn. Light intensity significantly affected fixation rates of the Calothrix mats which responded in a linear fashion from 9–100% full sunlight (ca. 1,900 μEin · m?2· sec?1). Calothrix mats from 30 and 40 C had maximum nitrogenase activity at their growth temperature suggesting that nitrogen fixation along the thermogradient was optimally adapted to in situ temperatures.  相似文献   
160.
Anacystis nidulans grown under high and low light, 100 and 10 μE m?2 s?1, respectively, was analyzed with respect to chlorophyll/P700, phycobiliproteins/P700, chlorophyll/cell, and oxygen evolution parameters. The photosynthetic unit sizes of this cyanobacterium, measured as the ratio of total chromophores (chlorophyll and bilin) to P700, were shown to be similar to those of higher plants and green algae. High light grown cells possessed a photosynthetic unit consisting of a core of 157 ± 6 chlorophyll a molecules per P700 associated with a light harvesting system of 95 ± 3.5 biliprotein chromophores. Low light grown cells had substantially more biliprotein chromophores per P700 (125 ± 3.1) than high light cells, but showed no significant difference in the numbers of chlorophyll a molecules per P700 (149 ± 4). Analyses of aqueous biliprotein extracts indicate that low light grown cells produce proportionately more phycocyanin relative to allophycocyanin than high light cells. Calculations of the molecular weight of biliproteins per P700 suggest that there is less than one phycobilisome per reaction center I under both growth conditions. Differences in chlorophyll/cell ratios and oxygen evolution characteristics were also observed. High light cells contain 6.3 × 10?12 mg chlorophyll cell?1, while low light grown cells contain 12.8 × 10?12 mg chlorophyll cell?1. Photosynthetic oxygen evolution rate vs. light intensity curves indicate that high light grown cells reach maximal levels of oxygen evolution at higher light intensity than low light grown cells. Maximal rates of oxygen evolution were 16.6 μmol oxygen min?1 (mg chlorophyll)?1 for high and 8.4 μmol oxygen min?1 (mg chlorophyll)?1 for low light cells. Maximal oxygen evolution rates per cell were equivalent for both cell types, although the amount of P700 per cell was lower in high light cells. High light grown cells are therefore capable of producing more oxygen per reaction center I than low light grown cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号