首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1614篇
  免费   73篇
  国内免费   119篇
  2024年   3篇
  2023年   20篇
  2022年   22篇
  2021年   49篇
  2020年   30篇
  2019年   34篇
  2018年   29篇
  2017年   34篇
  2016年   38篇
  2015年   50篇
  2014年   54篇
  2013年   71篇
  2012年   43篇
  2011年   54篇
  2010年   47篇
  2009年   73篇
  2008年   80篇
  2007年   75篇
  2006年   78篇
  2005年   83篇
  2004年   68篇
  2003年   67篇
  2002年   45篇
  2001年   66篇
  2000年   66篇
  1999年   55篇
  1998年   59篇
  1997年   45篇
  1996年   53篇
  1995年   45篇
  1994年   45篇
  1993年   44篇
  1992年   26篇
  1991年   24篇
  1990年   14篇
  1989年   14篇
  1988年   6篇
  1987年   16篇
  1986年   9篇
  1985年   18篇
  1984年   14篇
  1983年   11篇
  1982年   9篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
排序方式: 共有1806条查询结果,搜索用时 15 毫秒
101.
A backcrossed population(BC1)was derived from a cross between C1AFLP technique was employed for mapping the QTLs.The QTLs for the whole cocoon weight,cocoon shell weight,ratio of cocoon shell,weight of pupae etc.Were analyzed and 11 QTLs were detected based on the constructed linkage map.Two QTLs for whole cocoon weight were localized on linkage group 6 and 19; three QTLs for cocoon shell weight were localized on linkage group 3,14 and 19; three QTLs for ratio of cocoon shell were localized on the linkage group 2,11and 15,and three QTLs for the weight of pupae were localized on linkage 2,14 and 19.All these have laid an important base for the marker assisted breeding of the silkworm.  相似文献   
102.
We formulate two single-locus Mendelian models, one for androdioecy and the other one for gynodioecy, each with 3 parameters: t the male (female) fertility rate of males (females) to hermaphrodites, s the fraction of the progeny derived from selfing; and g the fitness of inbreeders. Each model is expressed as a transformation of a 3 dimensional zygotic algebra, which we interpret as a rational map of the projective plane. We then study the dynamics for the evolution of each reproductive system; and compare our results with similar published models. In this process, we introduce a general concept of fitness and list some of its properties, obtaining a relative measure of population growth, computable as an eigenvalue of a mixed mating transformation for a population in equilibrium. Our results concur with previous models of the evolution of androdioecy and gynodioecy regarding the threshold values above which the sexual polymophism is stable, although the previous models assume constant the fraction of ovules from hermaphrodites that are self pollinated, while we assume constant the fraction of the progeny derived from selfing. A stable androdioecy requires more stringent conditions than a stable gynodioecy if the amount of pollen used for selfing is negligible in comparison with the total amount of pollen produced by hermaphrodites. Otherwise, both models are identical. We show explicitly that the genotype fitnesses depend linearly on their frequencies. Simulations show that any population not at equilibrium always converges to the equilibrium point of higher fitness. However, at intermediate steps, the fitness function occasionally decreases.  相似文献   
103.
The goal of this work is to characterize structurally ambivalent fragments in proteins. We have searched the Protein Data Bank and identified all structurally ambivalent peptides (SAPs) of length five or greater that exist in two different backbone conformations. The SAPs were classified in five distinct categories based on their structure. We propose a novel index that provides a quantitative measure of conformational variability of a sequence fragment. It measures the context-dependent width of the distribution of (phi,xi) dihedral angles associated with each amino acid type. This index was used to analyze the local structural propensity of both SAPs and the sequence fragments contiguous to them. We also analyzed type-specific amino acid composition, solvent accessibility, and overall structural properties of SAPs and their sequence context. We show that each type of SAP has an unusual, type-specific amino acid composition and, as a result, simultaneous intrinsic preferences for two distinct types of backbone conformation. All types of SAPs have lower sequence complexity than average. Fragments that adopt helical conformation in one protein and sheet conformation in another have the lowest sequence complexity and are sampled from a relatively limited repertoire of possible residue combinations. A statistically significant difference between two distinct conformations of the same SAP is observed not only in the overall structural properties of proteins harboring the SAP but also in the properties of its flanking regions and in the pattern of solvent accessibility. These results have implications for protein design and structure prediction.  相似文献   
104.
An understanding of transport, flow, diffusivity and mass transfer processes is of central importance in many fields of environmental biotechnology such as biofilm, bioreactor and membrane engineering, soil and groundwater bioremediation, and wastewater treatment. Owing to its remarkable sensitivity to molecular displacements and to its noninvasive and nondestructive character, pulsed field gradient (PFG) nuclear magnetic resonance (NMR) can be a valuable tool for investigating such processes. In conventional NMR microscopy, spatial encoding is achieved by using static magnetic field gradients (B 0 gradients). However, an interesting alternative is to use radio-frequency magnetic field gradients (RF or B 1 gradients). Although the latter are less versatile than the former, RF field gradient microscopy is particularly suitable for dealing with heterogeneous systems such as porous media because of its quasi-immunity to background static magnetic field gradients arising from magnetic susceptibility inhomogeneities, unlike the B 0 gradients microscopy. Here, we present an overview of basic principles and the main features of this technique, which is still relatively unused. Different examples of diffusion imaging illustrate the potentialities of the method in both micro-imaging and the measurement of global or local diffusion coefficients within membranes and at liquid–solid interfaces. These examples suggest that a number of environmental problems could benefit from this technique. Different future prospects of application of B 1 gradient NMR microscopy in environmental biotechnology are considered. Journal of Industrial Microbiology & Biotechnology (2001) 26, 53–61. Received 09 February 2000/ Accepted in revised form 07 August 2000  相似文献   
105.
Primitive blood constitutes the ventralmost mesoderm in amphibians, and its cleavage-stage origin reveals important clues about the orientation of the dorsal/ventral axis in the embryo. In recent years, investigators employing various lineage-labeling strategies have reported disparate results for the origin of primitive blood in Xenopus [W. D. Tracey, Jr., M. E. Pepling, G. H. Thomsen, and J. P. Gergen (1998). Development 125, 1371-1380; M. C. Lane W. C. Smith (1999). Development 126, 423-434; K. R. Mills, D. Kruep, and M. S. Saha (1999). Dev. Biol. 209, 352-368; A. Ciau-Uitz, M. Walmsley, and R. Patient (2000). Cell 102, 787-796]. These discrepancies must be resolved in order to elucidate early embryonic patterning mechanisms in vivo. We directly compared two of the techniques used to determine the origin of the ventral blood islands and primitive blood, injection of either beta-galactosidase mRNA or conjugated dextrans, by coinjecting both tracers simultaneously into individual blastomeres in cleavage-stage embryos. We find that dextrans label progeny efficiently, while beta-galactosidase activity is not present in many of the progeny of an injected blastomere, suggesting that mRNA fails to diffuse throughout a blastomere. This result demonstrates that beta-galactosidase mRNA fails to meet the criterion for a true lineage label, namely efficient detection of the progeny of a blastomere, and raises questions about interpretations based on mapping the ventral blood islands using Lac Z mRNA as a tracer. We examined the origins of the ventral blood islands and primitive blood from the vegetal region of the marginal zone in regularly cleaving embryos by coinjecting both reporters into C-tier blastomeres. Our results demonstrate that both the ventral blood islands and primitive blood routinely arise from all C-tier blastomeres. Our data, in combination with published mapping results for the dorsal aorta, demonstrate that primitive and definitive blood do not have separate origins at the 32-cell stage in Xenopus. In addition, these results support a proposal to align the dorsal/ventral axis of the mesendoderm with the animal/vegetal axis in pregastrula Xenopus.  相似文献   
106.
This study describes development of a consensus genetic linkage map of bovine chromosome 24 (BTA24). Eight participating laboratories contributed data for 58 unique markers including a total of 25 409 meioses. Eighteen markers, which were typed in more than one reference population, were used as potential anchors to generate a consensus framework map. The framework map contained 16 loci ordered with odds greater than 1000:1 and spanned 79.3 cM. Remaining markers were included in a comprehensive map relative to these anchors. The resulting BTA24 comprehensive map was 98.3 cM in length. Average marker intervals were 6.1 and 2.5 cM for framework and comprehensive maps, respectively. Marker order was generally consistent with previously reported BTA24 linkage maps. Only one discrepancy was found when comparing the comprehensive map with the published USDA-MARC linkage map. Integration of genetic information from different maps provides a high-resolution BTA24 linkage map.  相似文献   
107.
A new paradigm is proposed for modeling biomacromolecular interactions and complex formation in solution (protein-protein interactions so far in this report) that constitutes the scaffold of the automatic system MIAX (acronym for Macromolecular Interaction Assessment X). It combines in a rational way a series of computational methodologies, the goal being the prediction of the most native-like protein complex that may be formed when two isolated (unbound) protein monomers interact in a liquid environment. The overall strategy consists of first inferring putative precomplex structures by identification of binding sites or epitopes on the proteins surfaces and a simultaneous rigid-body docking process using geometric instances alone. Precomplex configurations are defined here as all those decoys the interfaces of which comply substantially with the inferred binding sites and whose free energy values are lower. Retaining all those precomplex configurations with low energies leads to a reasonable number of decoys for which a flexible treatment is amenable. A novel algorithm is introduced here for automatically inferring binding sites in proteins given their 3-D structure. The procedure combines an unsupervised learning algorithm based on the self-organizing map or Kohonen network with a 2-D Fourier spectral analysis. To model interaction, the potential function proposed here plays a central role in the system and is constituted by empirical terms expressing well-characterized factors influencing biomacromolecular interaction processes, essentially electrostatic, van der Waals, and hydrophobic. Each of these procedures is validated by comparing results with observed instances. Finally, the more demanding process of flexible docking is performed in MIAX embedding the potential function in a simulated annealing optimization procedure. Whereas search of the entire configuration hyperspace is a major factor precluding hitherto systems from efficiently modeling macromolecular interaction modes and complex structures, the paradigm presented here may constitute a step forward in the field because it is shown that a rational treatment of the information available from the 3-D structure of the interacting monomers combined with conveniently selected computational techniques can assist to elude search of regions of low probability in configuration space and indeed lead to a highly efficient system oriented to solve this intriguing and fundamental biologic problem.  相似文献   
108.
Planted silvo-pastoral systems are formed by sparing selected native trees when land is cleared for pasture establishment, or by planting selected species – often known agroforestry species – into the establishing pasture. Isolated trees within pastures and savannas are often associated with `resource islands', characterized by higher fertility and organic matter levels under the tree canopies. We here examine the processes underlying the differences in fertility and organic matter in a buffel grass (Cenchrus ciliaris L.) pasture that contained two tree species (Ziziphus joazeiro Mart., Spondias tuberosa Arruda Cam.) preserved from the native thorn forest and a planted agroforestry species (Prospois juliflora Swartz D.C). The objective is to distinguish effects of soil variability from those induced by the presence of trees or the planting of pasture. The 13C signatures of the original (largely C3) vegetation, the preserved and planted trees, and the planted C4 grass were used to distinguish the provenance of organic matter in the top soil (0–15 cm). This allowed the conclusion that all trees maintained C3 derived C at the original thorn forest level, while lower levels under pasture were due to mineralisation of organic matter. The net rates of forest-derived C loss under pasture varied with soil type amounting to between 25 and 50% in 13 years after pasture establishment. Only on Alfisol, C inputs from the pasture compensated for the C3-C losses. Analysis of organic and inorganic P fractions indicated Z. joazeiro and P. juliflora enriched the soil under their canopy with P, whereas S. tuberosa had no positive effect on fertility. A combination of ANOVA and spatial analysis and mapping was used to show vegetation effects.  相似文献   
109.
Precise mapping of a locus affecting grain protein content in durum wheat   总被引:12,自引:0,他引:12  
Grain protein content (GPC) is an important factor in pasta and breadmaking quality, and in human nutrition. It is also an important trait for wheat growers because premium prices are frequently paid for wheat with high GPC. A promising source for alleles to increase GPC was detected on chromosome 6B of Triticum turgidum var. dicoccoides accession FA-15-3 (DIC). Two previous quantitative trait locus (QTL) studies found that the positive effect of DIC-6B was associated to a single locus located between the centromere and the Nor-B2 locus on the short arm of chromosome 6B. Microsatellite markers Xgwm508 and Xgwm193 flanking the QTL region were used in this study to develop 20 new homozygous recombinant substitution lines (RSLs) with crossovers between these markers. These 20 RSLs, plus nine RSLs developed in previous studies were characterized with four new RFLP markers located within this chromosome segment. Grain protein content was determined in three field experiments organized as randomized complete block designs with ten replications each. The QTL peaks for protein content were located in the central region of a 2.7-cM interval between RFLP markers Xcdo365 and Xucw67 in the three experiments. Statistical analyses showed that almost all lines could be classified unequivocally within low- and high- protein groups, facilitating the mapping of this trait as a single Mendelian locus designated Gpc-6B1. The Gpc-6B1 locus was mapped 1.5-cM proximal to Xcdo365 and 1.2-cM distal to Xucw67. These new markers can be used to reduce the size of the DIC chromosome segment selected in marker-assisted selection programs. Markers Nor-B2 and Xucw66 flanking the previous two markers can be used to select against the DIC segment and reduce the linkage drag during the transfer of Gpc-6B1 into commercial bread and pasta wheat varieties. The precise mapping of the high GPC gene, the high frequency of recombinants recovered in the targeted region, and the recent development of a tetraploid BAC library including the Gpc-6B1 DIC allele are the first steps towards the map-based cloning of this gene.Communicated by J. Dvorak  相似文献   
110.
Using a High Efficiency Genome Scanning (HEGS) system and recombinant inbred (RI) lines derived from the cross of Russia 6 and H.E.S. 4, a high-density genetic map was constructed in barley. The resulting 1,595.7-cM map encompassed 1,172 loci distributed on the seven linkage groups comprising 1,134 AFLP, 34 SSR, three STS and vrs1 (kernel row type) loci. Including PCR reactions, gel electrophoresis and data processing, 6 months of work by a single person was sufficient for the whole mapping procedure under a reasonable cost. To make an appraisal of the resolution of genetic analysis for the 95 RI lines based on the constructed linkage map, we measured three agronomic traits: plant height, spike exsertion length and 1,000-kernel weight, and the analyzed quantitative trait loci (QTLs) associated with these traits. The results were compared on the number of detected QTLs and their effects between a high-density map and a skeleton map constructed by selected AFLP and anchor markers. The composite interval mapping on the high-density map detected more QTLs than the other analyses. Closely linked markers with QTLs on the high-density map could be powerful tools for marker-assisted selection in barley breeding programs and further genetic analyses including an advanced backcross analysis or a map-based cloning of QTL. Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.S. Heslop-Harrison  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号