首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1988篇
  免费   89篇
  国内免费   168篇
  2024年   1篇
  2023年   21篇
  2022年   28篇
  2021年   45篇
  2020年   38篇
  2019年   55篇
  2018年   40篇
  2017年   32篇
  2016年   50篇
  2015年   64篇
  2014年   169篇
  2013年   188篇
  2012年   148篇
  2011年   120篇
  2010年   85篇
  2009年   118篇
  2008年   129篇
  2007年   130篇
  2006年   103篇
  2005年   87篇
  2004年   70篇
  2003年   77篇
  2002年   61篇
  2001年   38篇
  2000年   50篇
  1999年   31篇
  1998年   30篇
  1997年   20篇
  1996年   25篇
  1995年   27篇
  1994年   18篇
  1993年   19篇
  1992年   27篇
  1991年   15篇
  1990年   8篇
  1989年   14篇
  1988年   7篇
  1987年   12篇
  1986年   7篇
  1985年   11篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有2245条查询结果,搜索用时 15 毫秒
51.
52.
Long terminal repeat (LTR) retrotransposons are predominant mobile elements that play important roles in plant genome evolution. Here, we isolated the first putative complete Ty1/copia-like retrotransposon of 6303 bp in mangrove Rhizophora apiculata, named RARE-1. RARE-1 was homologous to the soybean retroelement 1 (SORE-1) and exhibited abundant cis-regulatory motifs involved in various stress responses in its LTRs. Using the sequence-specific amplification polymorphism (S-SAP) technique, we obtained a total of 112 bands for two R. apiculata populations from Hainan, China and Ranong, Thailand. The Hainan population showed slightly higher S-SAP polymorphism but fewer unique bands than the Ranong population. Moreover, the Hainan population also had significantly more copies of RARE-1 than the Ranong population as revealed by quantitative real-time PCR (qPCR). Our results suggested that RARE-1 might have been domesticated in the R. apiculata genome, as a result of the long-term evolution of mangroves under the extreme environment.  相似文献   
53.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   
54.
A homologous sequence was amplified from resurrection plant Selaginella pulvinta by RACE technique, proved to be the full-length cDNA of trehalose-6-phosphate synthase gene by homologous alignment and yeast complementation assay, and nominated as SpTPS1 gene. The open reading frame of this gene was truncated 225 bp at the 5′-end, resulting the N-terminal truncation modification of 75 amino acids for its encoding protein. The TPS1 deletion mutant strain YSH290 of the brewer's yeast transformed by the truncated gene SpTPS1Δ and its original full-length version restored growth on the medium with glucose as a sole carbon source and displayed growth curves with no significant difference, indicating their encoding proteins functioning as TPS enzyme. The TPS activity of the mutant strain transformed by the truncated gene SpTPS1Δ was about six fold higher than that transformed by its original version, reasoning that the extra N-terminal extension of the full-length amino acid sequence acts as an inhibitory domain to trehalose synthesis. However, the trehalose accumulation of the mutant strain transformed by the truncated gene SpTPS1Δ was only 8% higher than that transformed by its original version. This result is explained by the feedback balance of trehalose content coordinated by the comparative activities between trehalose synthase and trehalase. The truncated gene SpTPS1Δ is suggested to be used in transgenic operation, together with the inhibition of trehalase activity by the application of validamycin A or genetic deficiency of the endogenous trehalase gene, for the enhancement of trehalose accumulation and improvement of abiotic tolerance in transgenic plants.  相似文献   
55.
56.
57.
58.
Metallothioneins (MTs), a superfamily of cysteine-rich proteins, perform multiple functions, such as maintaining homeostasis of essential metals, detoxification of toxic metals and scavenging of oxyradicals. In this study, the promoter region of a metallothionein (MT) gene from Bay scallop Argopecten irradians (designed as AiMT1) was cloned by the technique of genomic DNA walking, and the polymorphisms in this region were screened to find their association with susceptibility or tolerance to high temperature stress. One insert–deletion (ins–del) polymorphism and sixteen single nucleotide polymorphisms (SNPs) were identified in the amplified promoter region. Two SNPs, − 375 T–C and − 337 A–C, were selected to analyze their distribution in the two Bay scallop populations collected from southern and northern China coast, which were identified as heat resistant and heat susceptible stocks, respectively. There were three genotypes, T/T, T/C and C/C, at locus − 375, and their frequencies were 25%, 61.1% and 13.9% in the heat susceptible stock, while 34.2%, 42.1% and 23.7% in the resistant stock, respectively. There was no significant difference in the frequency distribution of different genotypes between the two stocks (P > 0.05). In contrast, at locus − 337, three genotypes A/A, A/C and C/C were revealed with the frequencies of 11.6%, 34.9% and 53.5% in the heat susceptible stock, while 45.7%, 32.6% and 21.7% in the heat resistant stock, respectively. The frequency of C/C genotype in the heat susceptible stock was significantly higher (P < 0.01) than that in the heat resistant stock, while the frequency of A/A in the heat resistant stock was significantly higher (P < 0.01) than that in the heat susceptible stock. Furthermore, the expression of AiMT1 mRNA in scallops with C/C genotype was significantly higher than that with A/A genotype (P < 0.05) after an acute heat treatment at 28 °C for 120 min. These results implied that the polymorphism at locus − 337 of AiMT1 was associated with the susceptibility/tolerance of scallops to heat stress, and the − 337 A/A genotype could be a potential marker available in future selection of Bay scallop with heat tolerance.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号