首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   24篇
  国内免费   17篇
  545篇
  2024年   3篇
  2023年   3篇
  2022年   14篇
  2021年   12篇
  2020年   13篇
  2019年   13篇
  2018年   13篇
  2017年   7篇
  2016年   15篇
  2015年   28篇
  2014年   21篇
  2013年   41篇
  2012年   10篇
  2011年   14篇
  2010年   13篇
  2009年   18篇
  2008年   32篇
  2007年   17篇
  2006年   22篇
  2005年   23篇
  2004年   26篇
  2003年   26篇
  2002年   22篇
  2001年   13篇
  2000年   3篇
  1999年   8篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   9篇
  1992年   5篇
  1991年   7篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   9篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有545条查询结果,搜索用时 15 毫秒
81.
目的:探讨人参皂苷单体Rh2对人鼻咽癌CNE-2S细胞增殖及凋亡的影响。方法:将生长在对数期的人鼻咽癌CNE-2S细胞分为空白对照组、阴性对照组和实验组。对照组常规培养,阴性对照组采用含有DMSO的培养液培养,实验组在对照组细胞的基础上加入不同浓度人参皂苷单体Rh2处理。采用MTT法测定细胞增殖,PI单染流式细胞术分析各时期细胞所占百分比,Annexin V-PI双染流式细胞仪检测细胞的凋亡情况。结果:与阴性对照组相比,实验组各浓度下的Rh2对CNE-2S细胞均具有显著的增殖抑制作用(P0.05),且随着Rh2浓度的增加而呈现增强的趋势,其中浓度为12.5 mg·L-1 Rh2增值抑制率最低,浓度为100 mg·L-1Rh2增值抑制率最高。不同浓度人参皂苷单体Rh2 G0/G1期细胞分布显著高于阴性对照组(P0.001),且G2/M、S期细胞比例显著低于阴性对照组(P0.01),且随着人参皂苷单体Rh2浓度的增加作用呈现增强的趋势(P0.05);不同浓度的Rh2单体作用24h,CNE-2S细胞早期、晚期凋亡率及总凋亡率均较阴性对照组明显增高(P0.001),并且在Rh2单体浓度为100 mg·L-1时,凋亡率最高。结论:人参皂苷单体Rh2对人鼻咽癌CNE-2S细胞增殖及凋亡具有显著的影响,并且可能对单体Rh2的浓度存在依懒性。  相似文献   
82.
We have studied the interaction of the enzyme tissue transglutaminase (tTG), catalyzing cross-link formation between protein-bound glutamine residues and primary amines, with Parkinson's disease-associated α-synuclein protein variants at physiologically relevant concentrations. We have, for the first time, determined binding affinities of tTG for wild-type and mutant α-synucleins using surface plasmon resonance approaches, revealing high-affinity nanomolar equilibrium dissociation constants. Nanomolar tTG concentrations were sufficient for complete inhibition of fibrillization by effective α-synuclein cross-linking, resulting predominantly in intramolecularly cross-linked monomers accompanied by an oligomeric fraction. Since oligomeric species have a pathophysiological relevance we further investigated the properties of the tTG/α-synuclein oligomers. Atomic force microscopy revealed morphologically similar structures for oligomers from all α-synuclein variants; the extent of oligomer formation was found to correlate with tTG concentration. Unlike normal α-synuclein oligomers the resultant structures were extremely stable and resistant to GdnHCl and SDS. In contrast to normal β-sheet-containing oligomers, the tTG/α-synuclein oligomers appear to be unstructured and are unable to disrupt phospholipid vesicles. These data suggest that tTG binds equally effective to wild-type and disease mutant α-synuclein variants. We propose that tTG cross-linking imposes structural constraints on α-synuclein, preventing the assembly of structured oligomers required for disruption of membranes and for progression into fibrils. In general, cross-linking of amyloid forming proteins by tTG may prevent the progression into pathogenic species.  相似文献   
83.
Preparation of LNA nucleosides requires a number of synthetic steps but very efficient procedures have been developed, as have protocols for synthesis of LNA oligonucleotides on automated DNA synthesizers. In all cases, LNA oligonucleotides have exhibited good aqueous solubility as would be expected from their close structural resemblance to the natural nucleic acids. The universality of LNA mediated high-affinity and specific hybridization has been demonstrated extensively with a large number of duplex forming LNA-oligonucleotides. Most importantly, most of the members of the LNA molecular family have been shown to exert their substantial affinity increase (i) in combination with standard DNA, RNA and contemporary analogues and (ii) whether inserted as single nucleosides in an oligonucleotide or as blocks of contiguous nucleotides, an important point. The works on TFO's is expanding the usefulness of LNA to double strand recognition and it has been demonstrated that LNA it is a promising structure for further base modifications in the pursuit of global sequence specific recognition of DNA.  相似文献   
84.
The attractive and spacing interaction between pairs of filaments via cross-linkers, e.g. myosin oligomers connecting actin filaments, is modeled by global integral kernels for negative binding energies between two intersecting stiff and long rods in a (projected) two-dimensional situation, for simplicity. Whereas maxima of the global energy functional represent intersection angles of ‘minimal contact’ between the filaments, minima are approached for energy values tending to −∞, representing the two degenerate states of parallel and anti-parallel filament alignment. Standard differential equations of negative gradient flow for such energy functionals show convergence of solutions to one of these degenerate equilibria in finite time, thus called ‘super-stable’ states. By considering energy variations under virtual rotation or translation of one filament with respect to the other, integral kernels for the resulting local forces parallel and orthogonal to the filament are obtained. For the special modeling situation that these variations only activate ‘spring forces’ in direction of the cross-links, explicit formulas for total torque and translational forces are given and calculated for typical examples. Again, the two degenerate alignment states are locally ‘super-stable’ equilibria of the assumed over-damped dynamics, but also other stable states of orthogonal arrangement and different asymptotic behavior can occur. These phenomena become apparent if stochastic perturbations of the local force kernels are implemented as additive Gaussian noise induced by the cross-link binding process with appropriate scaling. Then global filament dynamics is described by a certain type of degenerate stochastic differential equations yielding asymptotic stationary processes around the alignment states, which have generalized, namely bimodal Gaussian distributions. Moreover, stochastic simulations reveal characteristic sliding behavior as it is observed for myosin-mediated interaction between actin filaments. Finally, the forgoing explicit and asymptotic analysis as well as numerical simulations are extended to the more realistic modeling situation with filaments of finite length.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.   相似文献   
85.
The regularities of the reaction of aminopolysaccharide chitosan with glutaraldehyde (GA) have been considered. The equilibrium forms of GA in water have been thoroughly studied by NMR spectroscopy. It has been established that at pH 5.6, the exchange of the protons of O=CHCH2 groups for deuterium occurs, indicating the presence of an anion, a product of the first stage of the aldol reaction; at pH > 7.2, the formation of the products of an aldol reaction and aldol condensation takes place. The kinetics of the reaction between the amino groups of chitosan and GA, the kinetics of gel formation in chitosan solutions in the presence of GA, and the kinetics of changes in the rigidity of gels formed have been studied by UV spectroscopy. IR spectra of cross-linked chitosan have been obtained. It has been shown that chitosan catalyzes the polymerization of GA to form irregular products; in this process, the length of oligomeric chains in modified or cross-linked chitosan and the concentration of conjugated bonds increase with the GA concentration and pH of the reaction medium.  相似文献   
86.
In previous work, a strongly stabilized variant of the β1 domain of streptococcal protein G (Gβ1) was obtained by an in vitro selection method. This variant, termed Gβ1-M2, contains the four substitutions E15V, T16L, T18I, and N37L. Here we elucidated the molecular basis of the observed strong stabilizations. The contributions of these four residues were analyzed individually and in various combinations, additional selections with focused Gβ1 gene libraries were performed, and the crystal structure of Gβ1-M2 was determined. All single substitutions (E15V, T16L, T18I, and N37L) stabilize wild-type Gβ1 by contributions of between 1.6 and 6.0 kJ mol− 1 (at 70 °C). Hydrophobic residues at positions 16 and 37 provide the major contribution to stabilization by enlarging the hydrophobic core of Gβ1. They also increase the tendency to form dimers, as shown by dependence on the concentration of apparent molecular mass in analytical ultracentrifugation, by concentration-dependent stability, and by a strongly increased van't Hoff enthalpy of unfolding. The 0.88-Å crystal structure of Gβ1-M2 and NMR measurements in solution provide the explanation for the observed dimer formation. It involves a head-to-head arrangement of two Gβ1-M2 molecules via six intermolecular hydrogen bonds between the two β strands 2 and 2′ and an adjacent self-complementary hydrophobic surface area, which is created by the T16L and N37L substitutions and a large 120° rotation of the Tyr33 side chain. This removal of hydrophilic groups and the malleability of the created hydrophobic surface provide the basis for the dimer formation of stabilized Gβ1 variants.  相似文献   
87.
Staphylococcus aureus α-toxin is the archetype of bacterial pore forming toxins and a key virulence factor secreted by the majority of clinical isolates of S. aureus. Toxin monomers bind to target cells and oligomerize to form small β-barrel pores in the plasma membrane. Many nucleated cells are able to repair a limited number of lesions by unknown, calcium-independent mechanisms. Here we show that cells can internalize α-toxin, that uptake is essential for cellular survival, and that pore-complexes are not proteolytically degraded, but returned to the extracellular milieu in the context of exosome-like structures, which we term toxosomes.  相似文献   
88.
The different approaches for targeting orally administered drugs to the colon include coating with pH-dependent polymers, design of time-release dosage forms, and the utilization of carriers that are degraded exclusively by colonic bacteria. The aim of the present study was to develop a single unit, site-specific drug formulation allowing targeted drug release in the colon. Matrix tablets were prepared by wet granulation using cross-linked chitosan (ChI) and chondroitin sulfate (ChS) polysaccharides as binder and carrier. ChS was used to form polyelectrolyte complexes (PEC) with ChI, and its potential as a colon-targeted drug carrier was investigated. Indomethacin was used as a model drug. The ChI and ChS PEC was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction studies (XRD). The matrix tablets were tested in vitro for their suitability as colon-specific drug delivery systems. FTIR demonstrated that the PEC forms through an electrostatic interaction between the protonated amine (NH3+) group of ChI with the free carboxylate (COO) group and sulfate (SO42−) group of ChS. DSC and XRD indicated that the PEC has different thermal characteristics from ChI or ChS. The dissolution data demonstrates that the dissolution rate of the tablet is dependent upon the concentration of polysaccharide used as binder and matrix and time of cross-linking. The study confirmed that selective delivery of indomethacin to the colon can be achieved using cross-linked ChI and ChS polysaccharides.  相似文献   
89.
Nucleosome positioning signals embedded within the DNA sequence have the potential to influence the detailed structure of the higher-order chromatin fibre. In two previous studies of long stretches of DNA, encompassing the chicken beta-globin and ovine beta-lactoglobulin genes, respectively, we mapped the relative affinity of every site for the core histone octamer. In both cases a periodic arrangement of the in vitro positioning sites suggests that they might influence the folding of a nucleosome chain into higher-order structure; this hypothesis was borne out in the case of the beta-lactoglobulin gene, where the distribution of the in vitro positioning sites is related to the positions nucleosomes actually occupy in sheep liver cells. Here, we have exploited the in vitro nucleosome positioning datasets to simulate nucleosomal organisation using in silico approaches. We use the high-resolution, quantitative positioning maps to define a one-dimensional positioning energy lattice, which can be populated with a defined number of nucleosomes. Monte Carlo techniques are employed to simulate the behaviour of the model at equilibrium to produce a set of configurations, which provide a probability-based occupancy map. Employing a variety of techniques we show that the occupancy maps are a sensitive function of the histone octamer density (nucleosome repeat length) and find that a minimal change in this property can produce dramatic localised changes in structure. Although simulations generally give rise to regular periodic nucleosomal arrangements, they often show octamer density-dependent discontinuities, which tend to co-localise with sequences that adopt distinctive chromatin structure in vivo. Furthermore, the overall organisation of simulated chromatin structures are more closely related to the situation in vivo than is the original in vitro positioning data, particularly at a nucleosome density corresponding to the in vivo state. Although our model is simplified, we argue that it provides a unique insight into the influence that DNA sequence can have in determining chromatin structure and could serve as a useful basis for the incorporation of other parameters.  相似文献   
90.
Babizhayev MA 《Life sciences》2006,78(20):2343-2357
Apart from genetically programmed cell aging, different external aggressors related to oxidative stress and lipid peroxidation (LPO) can accelerate the skin aging phenomenon. Oxidative stress associated with the formation of lipid peroxides is suggested to contribute to pathological processes in aging and systemic diseases known as the risk factors for cataract. Despite the fact that L-carnosine-related peptidomimetics N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine) (NAC) and carcinine (beta-alanylhistamine) are metabolically related to L-carnosine and have been demonstrated to occur in tissues of many vertebrates, including humans, these compounds were shown resistant toward enzymatic hydrolysis. A series of related biocompatible imidazole-containing peptidomimetics were synthesized in order to confer resistance to enzymatic hydrolysis and ex vivo improvement of protective antioxidative properties related to L-carnosine. The included findings revealed a greater role of N-acetylcarnosine (NAC) and carcinine ex vivo in the prolongation and potentiation of physiological responses to the therapeutical and cosmetics treatments with L-carnosine as antioxidant. 3-D molecular conformation studies proposed the antioxidant activity of peptidomimetics (carcinine, L-prolylhistamine, N-acetylcarnosine, L-carnosine) for metal ion binding, quenching of a number free radicals, and binding of hydroperoxide or aldehyde (including dialdehyde LPO products) in an imidazole-peroxide adducts. NAC can act as a time release (carrier) stable version of L-carnosine during application in ophthalmic pharmaceutical and cosmetics formulations which include lubricants. Carcinine, L-prolylhistamine show efficient deactivation of lipid hydroperoxides monitored by HPLC and protection of membrane phospholipids and water soluble proteins from the lipid peroxides-induced damages. This activity is superior over the lipophilic antioxidant vitamin E. The biologically significant applications of carnosine mimetics were patented by Dr. Babizhayev and the alliance Groups (WO 2004/028536 A1; WO 94/19325; WO 95/12581; WO 2004/064866 A1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号