首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7411篇
  免费   596篇
  国内免费   716篇
  2024年   17篇
  2023年   168篇
  2022年   154篇
  2021年   205篇
  2020年   242篇
  2019年   276篇
  2018年   223篇
  2017年   246篇
  2016年   250篇
  2015年   258篇
  2014年   267篇
  2013年   415篇
  2012年   262篇
  2011年   282篇
  2010年   233篇
  2009年   339篇
  2008年   370篇
  2007年   382篇
  2006年   407篇
  2005年   372篇
  2004年   344篇
  2003年   322篇
  2002年   265篇
  2001年   258篇
  2000年   239篇
  1999年   206篇
  1998年   156篇
  1997年   175篇
  1996年   165篇
  1995年   125篇
  1994年   161篇
  1993年   120篇
  1992年   119篇
  1991年   115篇
  1990年   93篇
  1989年   74篇
  1988年   59篇
  1987年   54篇
  1986年   51篇
  1985年   39篇
  1984年   43篇
  1983年   35篇
  1982年   26篇
  1981年   23篇
  1980年   11篇
  1979年   22篇
  1978年   20篇
  1977年   9篇
  1976年   8篇
  1975年   7篇
排序方式: 共有8723条查询结果,搜索用时 15 毫秒
281.
Specimens were studied of 65 samples of the genus Aphidura (Aphididae, Aphidinae, Macrosiphini) from the collection of the Muséum national d’Histoire naturelle (Paris). The possible synonymies of three pairs of species are discussed. New aphid host plant relationships are reported for Aphidura bozhkoae, Aphidura delmasi, Aphidura ornata, Aphidura pannonica and Aphidura picta; this last species is recorded for first time from Afghanistan. The record of Aphidura pujoli from Pakistan is refuted. The fundatrices, oviparous females and males of Aphidura delmasi are described. Six new species are established: Aphidura gallica sp. n. and Aphidura amphorosiphon sp. n. from specimens caught on species of Silene (Caryophyllaceae) from France and Iran, respectively, Aphidura pakistanensis sp. n., Aphidura graeca sp. n. and Aphidura urmiensis sp. n. from specimens caught on species of Dianthus, Gypsophila and Spergula (Caryophyllaceae) from Pakistan, Greece and Iran, respectively, and Aphidura iranensis sp. n. from specimens caught on Prunus sp. from Iran. Modifications are made to the keys by Blackman and Eastop to aphids living on Dianthus, Gypsophyla, Silene, Spergula and Prinsepia and Prunus (Rosaceae). An identification key to apterous viviparous females of species of Aphidura is also provided.  相似文献   
282.
Since the pre-historic era, humans have been using forests as a food, drugs and handcraft reservoir. Today, the use of botanical raw material to produce pharmaceuticals, herbal remedies, teas, spirits, cosmetics, sweets, dietary supplements, special industrial compounds and crude materials constitute an important global resource in terms of healthcare and economy. In recent years, DNA barcoding has been suggested as a useful molecular technique to complement traditional taxonomic expertise for fast species identification and biodiversity inventories. In this study, in situ application of DNA barcodes was tested on a selected group of forest tree species with the aim of contributing to the identification, conservation and trade control of these valuable plant resources.The “core barcode” for land plants (rbcL, matK, and trnH-psbA) was tested on 68 tree specimens (24 taxa). Universality of the method, ease of data retrieval and correct species assignment using sequence character states, presence of DNA barcoding gaps and GenBank discrimination assessment were evaluated. The markers showed different prospects of reliable applicability. RbcL and trnH-psbA displayed 100% amplification and sequencing success, while matK did not amplify in some plant groups. The majority of species had a single haplotype. The trnH-psbA region showed the highest genetic variability, but in most cases the high intraspecific sequence divergence revealed the absence of a clear DNA barcoding gap. We also faced an important limitation because the taxonomic coverage of the public reference database is incomplete. Overall, species identification success was 66.7%.This work illustrates current limitations in the applicability of DNA barcoding to taxonomic forest surveys. These difficulties urge for an improvement of technical protocols and an increase of the number of sequences and taxa in public databases.  相似文献   
283.
This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R2 > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry‐grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R2 > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution.  相似文献   
284.
Crop model‐specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs’ median‐projected maize and wheat yield changes were ?3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water‐use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EM?MM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EM?MM comparisons to provide a fuller picture of crop–climate response uncertainties.  相似文献   
285.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   
286.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   
287.
288.
289.
Mistletoes offer a unique model to study interactions among Al and nutrients in vascular plants, because they grow and reproduce on hosts with distinct Al uptake strategies. We investigated Al distribution and nutrient relations of mistletoes on Al‐accumulating and non‐accumulating hosts. We hypothesised that mistletoes would exhibit similar leaf nutrient and Al concentrations as their host plants, but a strong compartmentalisation of Al when growing on Al‐accumulators. We measured concentrations of N, P, K, Ca, Mg, Cu, Fe, Mn, Zn in leaves and Al in leaves, seeds and branches of Phthirusa ovata and Psittacanthus robustus infecting Miconia albicans, an Al‐accumulator, and Ph. ovata infecting Byrsonima verbascifolia, a non‐Al‐accumulator. High leaf concentrations of Al in Ph. ovata only occurred while parasitizing the Al‐accumulating host; there was no accumulation in branches or seeds. In P. robustus, large concentrations of Al were found in leaves, branches and seeds. Mistletoe seed viability and leaf nutrient concentrations were not affected by Al accumulation. Passive uptake of Al, Ca, Mg, Mn and Cu in mistletoes was evidenced by significant correlations between mistletoes and host leaf concentrations, but not of N, P and K. Al was retranslocated to different plant organs in P. robustus, whereas it was mostly restricted to leaves in Ph. ovata. We suggest that Al might have some specific function in P. robustus, which only parasitizes Al‐accumulator hosts, while the host generalist Ph. ovata can be considered a facultative Al‐accumulator.  相似文献   
290.
Two experiments were conducted to determine the establishment success of reintroducing Microlaena stipoides (pātītī, weeping rice grass) into existing high‐fertility grassland on the volcanic cones of the Auckland Isthmus. The first experiment monitored the survival and development of juveniles planted in a factorial design including two planting densities, two slope classes and two aspects across three cones. Plant survival during establishment was consistently over 90%. Maximum M. stipoides cover after 2 years (>80%) was achieved on north‐facing steep slopes (>25°) at the greater planting density (40 plants/m2). However, results were particularly idiosyncratic to specific cone/topographical combinations. The second experiment, on a flat site on one cone, monitored the survival and development of juveniles planted across four post‐planting treatments designed to suppress resident vegetation recovery. Plant survival after 6 months was relatively low (50%), and none of the treatments achieved greater than 5% cover of M. stipoides after 1 year. The chosen post‐planting treatments were unable to suppress vigorous recovery of competitive exotic grasses on a moist fertile site. Overall, juvenile planting was shown to be a potentially successful method of Microlaena establishment and could restore indigenous dominance to exotic grassland in this environment, but individual site factors and the high cost of establishment must be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号