首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7794篇
  免费   594篇
  国内免费   443篇
  8831篇
  2024年   18篇
  2023年   111篇
  2022年   103篇
  2021年   175篇
  2020年   179篇
  2019年   217篇
  2018年   223篇
  2017年   189篇
  2016年   239篇
  2015年   273篇
  2014年   472篇
  2013年   657篇
  2012年   348篇
  2011年   356篇
  2010年   324篇
  2009年   357篇
  2008年   410篇
  2007年   479篇
  2006年   392篇
  2005年   341篇
  2004年   311篇
  2003年   300篇
  2002年   254篇
  2001年   185篇
  2000年   162篇
  1999年   173篇
  1998年   156篇
  1997年   146篇
  1996年   141篇
  1995年   143篇
  1994年   140篇
  1993年   136篇
  1992年   92篇
  1991年   87篇
  1990年   82篇
  1989年   66篇
  1988年   56篇
  1987年   44篇
  1986年   46篇
  1985年   43篇
  1984年   36篇
  1983年   28篇
  1982年   37篇
  1981年   26篇
  1980年   18篇
  1979年   15篇
  1978年   15篇
  1977年   8篇
  1974年   4篇
  1973年   8篇
排序方式: 共有8831条查询结果,搜索用时 15 毫秒
111.
Carotenogenic mutants ofPhycomyces, which accumulate excess β-carotene or its intermediates, always failed in zygospore development. No improvement occurred when such mutants were mated together with a helper wild type of the same mating type against the wild type of the opposite mating type. Addition of excess synthesized pheromone, trisporin B, also failed to improve the zygospore development, though the mating response was significantly activated in the early stages and abundant zygophores were formed. Exceptional acceleration of the zygospore development under these experimental conditions occurred in a regulatory albino mutant (carA), which does not accumulate excess intermediate carotenoids. Chemically- or genetically-induced ovarproduction of β-carotene or lycopene also inhibited the zygospore development. These results imply that the zygospore development ofPhycomyces is maximal when the intracellular amount of β-carotene is optimal (=wild type), and that pheromones act mainly in the early stages of mating, while other factors such as the cell-to-cell recognition system may also be involved in the later stages. Intracellular accumulation of excess β-carotene or its intermediates probably disturb such later-stage factors.  相似文献   
112.
An F2 population, consisting of 231 individuals derived from a cross between rice cultivars with a similar growing duration, Palawan and IR42, was utilized to investigate the genetic nature of rice varietal ability to stimulate N2 fixation in the rice rhizosphere. To assess rhizospheric N2 fixation, an isotope-enriched 15N dilution technique was employed, using 15N-stabilized soil in pots. IR42, an indica variety, had 23% higher N derived from fixation (Ndfa) than Palawan, a javanica genotype. Normal segregation of atom% 15N excess was obtained in the F2 population, with an average of 0.218 with 8% of plants below IR42 (0.188) and 10% of plants above Palawan (0.248). One-hundred-and-four RFLP markers mapped on 12 chromosomes were tested for linkage to the putative QTLs. Significant (P<0.01) associations between markers and segregation of atom% 15N excess were observed for seven marker loci located on chromosomes 1, 3, 6 and 11. Four QTLs defined by the detected marker loci were identified by interval-mapping analysis. Additive gene action was found to be predominant, but for at least one locus, dominance and partial dominance effects were observed. Significant (P<0.01) epistatic effects were also identified. Individual marker loci detected between 8 and 16% of the total phenotypic variation. All four putative QTLs showed recessive gene action, and no phenotypic effects associated with heterozygosity of marker loci were observed. The results of this study suggest that rice genetic factors can be identified which affect levels of atom% 15N excess in the soil by interacting with diazotrophs in the rice rhizosphere.  相似文献   
113.
Significant segregation of spikelet fertility occurred in an F2 population derived from a spikelet fertility-normal F1 hybrid produced by a cross between Palawan, a japonica variety, and IR42, an indica variety. To identify factors controlling the fertility segregation, we used 104 RFLP markers covering all 12 rice chromosomes to investigate the association of spikelet fertility and marker segregation. We found that the segregation of two sets of gene pairs was significantly (P < 0.001) associated with fertility segregation. The first pair of genes was linked to RFLP marker RG778 on chromosome 12 and RFLP markers RG690/RG369 on chromosome 1. A significant reduction in fertility was observed when the plants were homozygote at RG778 with the indica allele as well as homozygote at RG690/RG369 with the japonica allele. The second pair of genes was linked to RG218 on chromosome 12 and RG650 on chromosome 7, respectively. The recombinant homozygote at these two loci showed a significant reduction on spikelet fertility. The non-allelic interaction effect was further modified by a gene linked to RG778, resulting in even lower fertility. The results of this study provides the first evidence of chromosomal localization of sporophytic sterility genes whose interaction can result in a reduction of spikelet fertility in the F2 derived from fertility-normal F1.  相似文献   
114.
Cotton is unusual among major crop plants in that two cross-fertile species are widely cultivated for a common economic product, fiber. Both historical evidence and classical genetic studies suggest that many improved forms of Gossypium barbadense (Sea Island, Egyptian, and Pima cottons) may include chromatin derived from G. hirsutum. Using 106 restriction fragment length polymorphism (RFLP) loci well distributed across the cotton genome, we revealed the amount and genomic distribution of G. hirsutum chromatin in 54 G. barbadense collections from around the world. The average G. barbadense collection was comprised of 8.9% alleles apparently derived from G. hirsutum. Pima cultivars (7.3 %) had fewer G. hirsutum alleles than Sea Island (9.0%) or Egyptian (9.6%) cultivars. G. hirsutum alleles were not randomly distributed, as 57.5% of the total introgression observed was accounted for by five specific chromosomal regions that span less than 10% of the genome. The average length of an introgressed chromosome segment was 12.9 cM. Overlap of introgressed chromatin in different breeding programs hints that retention of these G. hirsutum chromosomal segments may impart a selective advantage to G. barbadense genotypes. Although cluster analysis generally grouped germ plasm from common classes and/or breeding programs together, no 2 genotypes were identical — thus differences in the length and repertoire of introgressed chromosome segments also permit DNA fingerprinting of G. barbadense cultivars.  相似文献   
115.
Spatial and temporal dynamics of biomass allocation within and between organs were investigated in seedlings of two birch species of contrasting successional status. Seedlings of Betula alleghaniensis Britt (yellow birch) and B. populifolia Marsh (gray birch) were grown for 6 weeks at two nutrient levels in rectangular plexiglass containers to allow non-destructive estimates of root growth, production and loss. Leaf area and production were simultaneously monitored. Yellow birch responded more to nutrient level than gray birch in terms of total biomass, shoot biomass, leaf area and root length. Yellow birch also flexibly altered within-organ allocation (specific leaf area, specific root length and specific soil amount). In contrast, gray birch altered between-organ allocation patterns (root length:leaf area and soil amount:leaf area ratios) more than yellow birch in response to nutrient level. Yellow birch showed greater overall root density changes within a very compact root system, while gray birch showed localized root density changes as concentric bands of new root production spread through the soil. Species differ critically in their responses of standing root length and root production and loss rates to nutrient supply. Early successional species such as gray birch are hypothesized to exhibit higher plasticity in varied environments than later successional species such as yellow birch. Our results suggest that different patterns of allocation, within and between plant organs, do not necessarily follow the same trajectories. To characterize thoroughly the nature of functional flexibility through ontogeny, within- and between-organ patterns of allocation must be accounted for.  相似文献   
116.
Nutrient uptake relationship to root characteristics of rice   总被引:1,自引:0,他引:1  
Data on root parameters and distribution are important for an improved understanding of the factors influencing nutrient uptake by a crop. Therefore, a study was conducted on a Crowley silt loam at the Rice Research and Extension Center near Stuttgart, Arkansas to measure root growth and N, P and K uptake by three rice (Oryza sativa L.) cultivars at active tillering (36 days after emergence (DAE)), maximum tillering (41 DAE), 1.25 cm internode elongation (55 DAE), booting (77 DAE) and heading (88 DAE). Soil-root core samples were taken to a depth of 40 cm after plant samples were removed, sectioned into 5 cm intervals, roots were washed from soil and root lengths, dry weights and radii were measured. Root parameters were significantly affected by the soil depth × growth stage interaction. In addition, only root radius was affected by cultivar. At the 0- to 5-cm soil depth, root length density ranged from 38 to 93 cm cm-3 throughout the growing season and decreased with depth to about 2 cm cm-3 in the 35- to 40-cm depth increment. The increase in root length measured with each succeeding growth stage in each soil horizon also resulted in increased root surface area, hence providing more exposed area for nutrient uptake. About 90% of the total root length was found in the 0- to 20-cm soil depth throughout the season. Average root radius measured in the 0- to 5-cm and 35- to 40-cm depth increments ranged from 0.012 to 0.013 cm and 0.004 to 0.005 cm, respectively throughout the season. Total nutrient uptake by rice differed among cultivars only during vegetative growth. Differences in total nutrient uptake among the cultivars in the field appear to be related to absorption kinetics of the cultivars measured in a growth chamber study. Published with permission of the Arkansas Agricultural Experiment Station.  相似文献   
117.
Photoperiod is an important signal controlling the onset of dormancy in perennial plants. Short days typically induce growth cessation, the initiation of cold acclimation, the formation of a terminal bud. bud dormancy and other adaptive responses. Photoperiodic ecotypes have evolved in many species with large latitudinal distributions. The photoperiodic responses of two northern (53°35′ and 53°50′N) and two southern (34°10′ and 40°32′N) genotypes of black cottonwood (Populus trichocarpa Torr. & Gray) were characterized by growing trees under a range of photoperiods in the greenhouse and growth chamber. Short days induced bud set in both ecotypes. resulting in trees with fewer leaves and less height growth than trees grown under long days. Short days also enhanced anthocyanin accumulation in the northern ecotype and decreased branching of the southernmost genotype. Two aspects of the photoperiodic response were evaluated for each trail: critical photoperiod. which was defined as the longest photoperiod that elicited a short-day response, and photoperiodic sensitivity, which was defined as the change in response per unit change in photoperiod. For each of the traits analyzed, the northern ecotype had a longer critical photoperiod and greater photoperiodic sensitivity than did the southern ecotype. The short critical photoperiod and reduced photoperiodic sensitivity of the southern ecotype resulted in a significant delay in bud set compared to that of the northern ecotype, even under a 9-h photoperiod. Typically, photoperiodic ecotypes have been characterized as having different critical photoperiods. Ecotypic differences in photoperiodic sensitivity, however, indicate that differences in the photoperiodic response curves cannot be completely described by the critical photoperiod alone. These results also suggest that the critical photoperiod. photoperiodic sensitivity and speed of bud set have a common physiological basis. Bud set occurred earlier hi the northern ecotype primarily because bud scale leaves were initiated earlier. For one of the northern genotypes, leaf primordia that were initialed under long days subsequently differentiated into bud scale leaves after the trees were transferred to a 9-h photoperiod. This demonstrates that primordia initiated under long days are not necessarily committed to becoming foliage leaves. The response to photoperiod did not differ appreciably between the greenhouse and growth chamber conditions that were tested.  相似文献   
118.
Despite their difference in potential growth rate, the slow-growing Brachypodium pinnatum and the fast-growing Dactylis glomerata co-occur in many nutrient-poor calcareous grasslands. They are known to respond differently to increasing levels of N and P. An experiment was designed to measure which characteristics are affected by nutrient supply and contribute to the ecological performance of these species. Nutrient acquisition and root and shoot traits of these grasses were studied in a garden experiment with nine nutrient treatments in a factorial design of 3 N and 3 P levels each. D. glomerata was superior to B. pinnatum in nutrient acquisition and growth in all treatments. B. pinnatum was especially poor in P acquisition. Both species responded to increasing N supply and to a lesser extent to increasing P supply by decreasing their root length and increasing their leaf area per total plant weight. D. glomerata showed a higher plasticity. In most treatments, the root length ratio (RLR) and the leaf area ratio (LAR) were higher for D. glomerata. A factorization of these parameters into components expressing biomass allocation, form (root fineness or leaf thickness) and density (dry matter content) shows that the low density of the biomass of D. glomerata was the main cause for the higher RLR and LAR. The biomass allocation to the roots showed a considerable plasticity but did not differ between the species. B. pinnatum had the highest leaf weight ratio. Root fineness was highly plastic in D. glomerata, the difference with B. pinnatum being mainly due to the thick roots of D. glomerata at high nutrient supply. The leaf area/leaf fresh weight ratio did not show any plasticity and was slightly higher for B. pinnatum. It is concluded, that the low density of the biomass of D. glomerata is the pivotal trait responsible for its faster growth at all nutrient levels. It enables simultaneously a good nutrient acquisition capacity by the roots as well as a superior carbon acquisition by the leaves. The high biomass density of B. pinnatum will then result in a lower nutrient requirement due to a slower turnover, which in the long term is advantageous under nutrient-poor conditions.  相似文献   
119.
120.
This report describes the effect of different dose levels of infection upon worm burdens and development and fecundity of the parasites. Three groups each of 40, 9-week-old, helminth naïve pigs were inoculated once with either 2000 (group A), 20,000 (group B), or 200,000 (group C) infective third stage larvae of Oesophagostomum dentatum. Subgroups of 5 pigs from each major group were killed 3, 6, 11, 14, 18, 25, 34 and 47 days post inoculation (p.i.) and the large intestinal worm burdens were determined. Faecal egg counts were determined at frequent intervals after day 13 p.i. There were no overt clinical signs of gastrointestinal helminthosis during the experiment. Faecal egg counts became positive in groups A and B at around day 19 p.i., whereas most pigs in the high dose group C did not have positive egg counts until day 27–33 p.i. and some pigs remained with zero egg counts until the end of the study. Throughout the experiment the worm populations in group C consisted mainly of immature larval stages, while those in groups A and B were predominantly adult stages after days 14–18. Adult worms from the low dose group A were significantly longer than those from group C. At high population densities, stunted development of worms and reduced fecundity among female worms were found. Furthermore, there was a tendency for the distribution of the worms within the intestine to be altered with increasing population size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号