首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6240篇
  免费   725篇
  国内免费   590篇
  7555篇
  2024年   44篇
  2023年   221篇
  2022年   293篇
  2021年   444篇
  2020年   493篇
  2019年   635篇
  2018年   396篇
  2017年   236篇
  2016年   281篇
  2015年   266篇
  2014年   386篇
  2013年   460篇
  2012年   269篇
  2011年   316篇
  2010年   211篇
  2009年   258篇
  2008年   259篇
  2007年   262篇
  2006年   218篇
  2005年   225篇
  2004年   183篇
  2003年   169篇
  2002年   143篇
  2001年   74篇
  2000年   68篇
  1999年   74篇
  1998年   65篇
  1997年   57篇
  1996年   53篇
  1995年   46篇
  1994年   41篇
  1993年   47篇
  1992年   32篇
  1991年   27篇
  1990年   31篇
  1989年   22篇
  1988年   25篇
  1987年   23篇
  1986年   26篇
  1985年   25篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有7555条查询结果,搜索用时 0 毫秒
31.
Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme d-ribulose-5-phosphate 3-epimerase (R5P3E) (EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.Abbreviations R5P3E d-ribulose-5-phosphate 3-epimerase - RPI ribose-5-phosphate isomerase - TKL transketolase - PRK phosphoribulokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - FBP fructose-1,6-bisphophatase - FBP fructose 1,6-bisphosphate - G6PDH glucose-6-phosphate dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - OPPP oxidative pentose phosphate pathway - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - FBA fructose-1,6-bisphophate aldolase - IPTG isopropyl -d-thiogalactoside - GST glutathione S-tranferase - PBS phosphate-buffered saline - TPI triosephosphate isomerase  相似文献   
32.
Poly(A) polymerase is responsible for the addition of the adenylate tail to the 3′ ends of mRNA. Using the two-hybrid system, we have identified two proteins which interact specifically with the Saccharomyces cerevisiae poly(A) polymerase, Pap1. Uba2 is a homolog of ubiquitin-activating (E1) enzymes and Ufd1 is a protein whose function is probably also linked to the ubiquitin-mediated protein degradation pathway. These two proteins interact with Pap1 and with each other, but not with eight other target proteins which were tested in the two-hybrid system. The last 115 amino acids of Uba2, which contains an 82-amino acid region not present in previously characterized E1 enzymes, is sufficient for the interaction with Pap1. Both Uba2 and Ufd1 can be co-immunoprecipitated from extracts with Pap1, confirming in vitro the interaction identified by two-hybrid analysis. Depletion of Uba2 from cells produces extracts which polyadenylate precursor RNA with increased efficiency compared to extracts from nondepleted cells, while depletion of Ufd1 yields extracts which are defective in processing. These two proteins are not components of polyadenylation factors, and instead may have a role in regulating poly(A) polymerase activity. Received: 6 January 1997 / Accepted: 27 February 1997  相似文献   
33.
34.
A new approach to the design of conceptually and phenomenologically new herbicides is described. It involves the joint utilization of tetrapyrrole precursors, such as δ-aminolaevulinic acid (a biodegradable amino acid) and activators of the chlorophyll biosynthetic pathway, such as 2,2′-dipyridyl, in order to induce treated plants to biosynthesize and accumulate massive amounts of tetrapyrrole intermediates of the chlorophyll biosynthetic pathway in the dark (i.e. at night). During the subsequent light period (daylight) the accumulated tetrapyrroles act as potent photodynamic sensitiziers, which in turn result in the death of susceptible plants in a matter of hours. We have therefore proposed to name herbicides that act via this mechanism as photodynamic herbicides, or more pictorially as laser herbicides. From a limited survey of agricultural plant and weed species it appears that photodynamic herbicides exhibit a very pronounced organ, age and species-dependent selectivity. For example, dicotyledonous weeds such as mustard, red-root pigweed, common purslane and lambsquarter are very susceptible while monocotyledonous plants such as corn, wheat, barley and oats are not. The biochemical basis of this selectivity seems to lie, among other things, in the rates of tetrapyrrole turnover and in a differential enhancement by the applied chemicals of the monovinyl and divinyl tetrapyrrole biosynthetic pathways in the various species. A survey of various groups of chemicals (herbicides and other selected biochemicals) that are likely to exhibit photodynamic herbicidal properties is currently under investigation.  相似文献   
35.
Characterization of a new marine methylotroph   总被引:1,自引:0,他引:1  
Abstract A methanol-oxidizing bacterium from a marine environment has been isolated and characterized. The bacterium was a Gram-negative rod, capable of growth on methanol and methylamine, but not on multicarbon compounds. It showed a temperature optimum of 30°C, a salt optimum of 0.4% (w/v) and the mol % G + C of its DNA was 46%. Carbon was assimilated via the ribulose monophosphate pathway for formaldehyde fixation during growth on methanol. This bacterium superficially resembled other obligate methylotrophs requiring NaCl reported previously which were designated Methylomonas thalassica . It also appeared similar to many strains of obligate freshwater methylotrophs, except for its NaCl requirement and its lower mol % G + C.  相似文献   
36.
H. Stabenau  W. Säftel 《Planta》1982,154(2):165-167
Microbodies of the algaMougeotia were isolated in a linear sucrose gradient. The organelles, which moved to the density 1.24 g cm–3, contained about 70% of the glycolate oxidase (EC 1.1.3.1) found in this alga. The enzyme oxidized glycolate, utilizing either oxygen or 2,6-dichlorophenolindophenol (DCPIP) as the electron acceptor. L-Lactate was an alternate substrate; almost no D-lactate was utilized. In the presence of O2, a Km of 415 M was determined for glycolate, whereas the Km for L-lactate was about 5,000 M. In the presence of DCPIP, lower concentrations of glycolate and L-lactate were sufficient to obtain the highest rates of enzyme activity.Abbreviations DCPIP 2,6-dichlorophenolindophenol Supported by the Deutsche Forschungsgemeinschaft  相似文献   
37.
I. Stulen  G. F. Israelstam  A. Oaks 《Planta》1979,146(2):237-241
An asparagine synthetase which is active with either glutamine or NH 4 + has been found in maize (Zea mays L.) roots. Unlike the enzyme obtained from legume cotyledons, the maize-root enzyme is only slightly more efficient with glutamine (Km, 1.0 mM) than with NH 4 + (Km, 2.0–3.0 mM). The activity of this enzyme is higher in the mature root than in the root-tip region, i.e. root cells develop a capacity to make asparagine from glutamine or NH 4 + as they mature. -Cyanoalanine synthetase is also present in maize roots. The apparent Km for cysteine is 2.6 mM and for cyanide is 0.57 mM. The enzyme is more active in the root tip than in mature root tissue. Thus, if asparagine were made in the root tip, the cyanide pathway could represent the mechanism of synthesis. It is our contention, however, that this potential is not realized under normal conditions because 14C-experiments performed previously have indicated a limited availability of both CN and cysteine in the maize root.  相似文献   
38.
Using differently labelled precursors, it was established that rhododendrin (3-(4-hydroxyphenyl)-1-methylpropyl-β-D-glucopyranoside) is formed through the phenylpropane pathway via p-coumaryl alcohol, dihydro-p-coumaryl alcohol and C-methylation of the γ-C-atom of the C6C3 unit with methionine supplying the methyl group. It was demonstrated that the pro-(S)-hydrogen atom of dihydro-p-coumaryl alcohol is replaced stereospecifically by the methyl group.  相似文献   
39.
Pea chloroplastic phosphoribulokinase and yeast phosphoriboisomerase partition independently of one another in a two-phase polyethyleneglycol, dextran system, but apparent interaction is seen when ribose-5-phosphate is added to the two-phase system. It appears that the pea leaf of kinase recognizes yeast isomerase when it is carrying metabolite.  相似文献   
40.
Non-green plastids (leucoplasts) isolated from pea roots are shown to be considerably active in forming aromatic amino acids by the shikimate pathway which, in contrast to the chloroplast pathway, is independent of light. Supply of phosphoenolpyruvate and 3-dehydroquinate, 3-dehydroshikimate, shikimate and quinate effectively enhances the formation of aromatic amino acids suggesting an intra- or/and intercellular intermediate transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号