首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4826篇
  免费   184篇
  国内免费   666篇
  2023年   40篇
  2022年   38篇
  2021年   73篇
  2020年   97篇
  2019年   89篇
  2018年   78篇
  2017年   106篇
  2016年   117篇
  2015年   96篇
  2014年   133篇
  2013年   422篇
  2012年   141篇
  2011年   214篇
  2010年   147篇
  2009年   298篇
  2008年   311篇
  2007年   303篇
  2006年   288篇
  2005年   222篇
  2004年   215篇
  2003年   194篇
  2002年   171篇
  2001年   165篇
  2000年   149篇
  1999年   126篇
  1998年   120篇
  1997年   105篇
  1996年   94篇
  1995年   96篇
  1994年   97篇
  1993年   87篇
  1992年   95篇
  1991年   57篇
  1990年   90篇
  1989年   55篇
  1988年   59篇
  1987年   72篇
  1986年   63篇
  1985年   45篇
  1984年   55篇
  1983年   15篇
  1982年   20篇
  1981年   23篇
  1980年   26篇
  1979年   28篇
  1978年   21篇
  1977年   24篇
  1976年   17篇
  1974年   21篇
  1973年   20篇
排序方式: 共有5676条查询结果,搜索用时 447 毫秒
21.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   
22.
Growth of Nitrobacter by dissimilatoric nitrate reduction   总被引:2,自引:0,他引:2  
Abstract Eight strains of the genus Nitrobacter grew under anaerobic conditions in the presence of nitrate. The growth was inhibited by nitrate concentrations above 0.5 mM. By a special culture technique inhibition caused by nitrite was abolished. Nitrate oxidizing cells grew in gas tight culture flasks as a biofilm on a gas-permeable silicone tubing. The biofilm allowed nitrate-reducing cells to grow at a low nitrite concentration. These cells grew either actively motile in the anaerobic medium, or in anaerobic zones of the biofilm. They produced nitrite and ammonia. Nitrogen balance calculations established a loss of inorganic nitrogen for 5 of 8 strains. This implies that nitrate-reducing cells produced furthermore volatile nitrogen compounds. N2O was detected by gas chromatography.  相似文献   
23.
24.
Summary The Alternaria stem canker resistance locus (Asc-locus), involved in resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici and in insensitivity to host-specific toxins (AAL-toxins) produced by the pathogen, was genetically mapped on the tomato genome. Susceptibility and resistance were assayed by testing a segregating F2 population for sensitivity to AAL-toxins in leaf bioassays. Linkage was observed to phenotypic markers solanifolium and sunny, both on chromosome 3. For the Asc-locus, a distance of 18 centiMorgan to solanifolium was calculated, corresponding to position 93 on chromosome 3. This map position of the resistance locus turned out to be the same in three different resistant tomato accessions, one Dutch and two American, that are at least 40 years apart. AAL-toxin sensitivity in susceptible and resistant tomato genotypes was compared with AAL-toxin sensitivity in a non-host Nicotiana tabacum during different levels of plant cell development. In susceptible and resistant tomato genotypes, inhibitory effects were demonstrated at all levels, except for leaves of resistant genotypes. However, during pollen and root development, inhibitory effects on susceptible genotypes were larger than on resistant genotypes. In the non-host Nicotiana tabacum, hardly any effects of AAL-toxins were demonstrated. Apparently, a cellular target site is present in tomato, but not in Nicotiana tabacum. It was concluded that three levels of AAL-toxin sensitivity exist: (1) a susceptible host sensitivity, (2) a resistant host sensitivity, (3) a non-host sensitivity, and that the resistance mechanism operating in tomato is different from that operating in Nicotiana tabacum.  相似文献   
25.
Pathogenicity of some chrysosporium species isolated in France   总被引:2,自引:0,他引:2  
In order to appreciate the pathogenicity of several geophilic Chrysosporium species (including Anixiopsis stercoraria, Chrysosporium keratinophilum, C. tropicum, C. pannorum, C. state of Arthroderma curreyi, C. state of A. multifidum, and C. state of A. tuberculatum), the authors have realized two series of experimental infestations. Inoculation of these fungi on the back of guinea pigs produced rare erythematous scaling lesions which spontaneously disappeared 3–5 weeks later. No real hair invasion was observed. In white mice, eight weeks after intraperitoneal inoculation, granulomas with necrotic center were observed in the peritoneal tissue with C. keratinophilum, C. tropicum, C. state of A. curreyi and C. state of A. tuberculatum. Conidia were often intact in necrotic centers and retrocultures were positive. With C. state of A. curreyi, spherical spores associated with rare budding cells were noted. The pathogenic role of these keratinophilic fungi is uncertain. However, their ability to remain viable for several weeks in skin and peritoneal tissue indicates that they could become pathogen in certain circumstances.This paper was presented at the Xth congress of the International Society for Human and Animal Mycology at Barcelona, Spain from June 27 to July 1, 1988.  相似文献   
26.
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.  相似文献   
27.
A new strictly anaerobic bacterium was isolated from an enrichment culture with glutarate as sole substrate and freshwater sediment as inoculum, however, glutarate was not metabolized by the pure culture. The isolate was a mesophilic, spore-forming, Gram-negative, motile curved rod. It fermented various organic acids, alcohols, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Other acids were fermented to acetate and propionate or acetate and butyrate. Succinate and malonate were decarboxylated to propionate or acetate, respectively, and served as sole sources of carbon and energy for growth. No inorganic electron acceptors except CO2 were reduced. Yeast extract (0.05% w/v) was required for growth. Small amounts of cytochrome b were detected in membrane fractions. The guanine-plus-cytosine content of the DNA was 44.1±2 mol%. The isolate is described as a new species of the genus Sporomusa, S. malonica.  相似文献   
28.
29.
Growth of Propionibacterium freudenreichii was studied with glycerol, lactate, and propionate as energy sources and a three-electrode poised-potential amperometric electrode system with hexacyanoferrate (III) as mediator. In batch culture experiments with glycerol and lactate as substrates, hexacyanoferrate (III) was completely reduced. Growth yields increased and the fermentation patterns were shifted towards higher acetate formation with increasing hexacyanoferrate (III) concentrations (0.25–8.0 mM). In experiments with regulated electrodes, glycerol, lactate, and propionate were oxidized to acetate and CO2, and the electrons were quantitatively transferred to the working electrode. Growth yields of 29.0, 13.4 and 14.2 g cell material per mol were calculated, respectively. The high cell yield obtained during propionate oxidation cannot be explained solely by substrate level phosphorylation indicating that additional energy was conserved via electron transport phosphorylation. Furthermore, this result indicated complete reversibility of the methyl-malonyl-CoA pathway in propionic acid bacteria.  相似文献   
30.
Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase.Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid - DTT dithiothreitol - SSAD succinic semialdehyde dehydrogenase - GABAT 4-aminobutyrate transaminase - GABA 4-aminobutyrate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号