首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   992篇
  免费   63篇
  国内免费   84篇
  1139篇
  2024年   1篇
  2023年   11篇
  2022年   9篇
  2021年   20篇
  2020年   25篇
  2019年   20篇
  2018年   17篇
  2017年   22篇
  2016年   29篇
  2015年   26篇
  2014年   43篇
  2013年   64篇
  2012年   29篇
  2011年   27篇
  2010年   22篇
  2009年   30篇
  2008年   43篇
  2007年   48篇
  2006年   36篇
  2005年   44篇
  2004年   32篇
  2003年   41篇
  2002年   29篇
  2001年   40篇
  2000年   38篇
  1999年   51篇
  1998年   26篇
  1997年   24篇
  1996年   30篇
  1995年   23篇
  1994年   27篇
  1993年   25篇
  1992年   26篇
  1991年   17篇
  1990年   25篇
  1989年   16篇
  1988年   16篇
  1987年   15篇
  1986年   6篇
  1985年   17篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   9篇
  1980年   4篇
  1979年   10篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有1139条查询结果,搜索用时 0 毫秒
31.
The alienicolae of Patchiella reaumuri (Kaltenbach), which is heteroecious between Tilia x vulgaris Hayne and roots of Arum species, are here described from material reared on Arum maculatum L. and A. italicum Mill. in 1977. The sexupara morph is also described for the first time from specimens obtained in the same culture. Key couplets are offered whereby this morph can be separated from sexuparae of other British Pemphiginae.  相似文献   
32.
Twenty-five species and two subpecies of aphids are listed and dicussed as additions to the Brutish fauna since publication of "Additions and amendment to the Cheack List British aphids" subspecies is described as new to sicence.  相似文献   
33.
The cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is distributed throughout the tropical and subtropical areas of the world. The main crops attacked by B. brassicae are cabbage, collard greens, broccoli, Brussels sprouts, and cauliflower. To survive the attack of pest insects, plants have evolved various resistance mechanisms that may affect pest feeding behavior. The use of electronic monitoring through EPG (electrical penetration graph) can help characterize and distinguish the resistance mechanisms involved. This study evaluated the feeding behavior of B. brassicae in eight genotypes of collard greens, Brassica oleraceae L. var. acephala (Brassicaceae), exhibiting antixenosis and/or antibiosis resistance to this insect. Possible correlations were established between the glucosinolate levels, the hardness, and the epicuticular wax on the leaves vs. aphid feeding behavior. On the genotypes 22V, 5E, and 27VA, for which many ‘potential drop’ waves were performed, aphid development was slower, indicating antixenosis as resistance type. Aphids on the genotypes 22V and 24X required more time until accessing the phloem, also suggesting antixenosis as resistance category. Genotypes 22V and PE had hard leaves, which also points at antixenosis. Genotypes 20T and HS had higher total wax and wax mg−1. Feeding parameters on ARI and 24X were similar to those observed on HS; antibiosis is likely to be the predominant resistance category of this germplasm. Because HS was considered as a susceptible standard genotype in this study, a higher gluconapin amount indicates that this compound does not influence cabbage aphid feeding behavior. The present study confirms that analysis of the physical and chemical aspects of collard greens genotypes by the EPG technique can provide a useful approach for the study of plant resistance to cabbage aphids.  相似文献   
34.
Abstract

The biological effect of plant extracts on the two predators C. carnea and C. undecimpunctata was studied in the laboratory. Treated B. brassicae was offered to the newly hatched larvae of the two predators. The rate of prey consumption and duration of the larval instars of the two predators were slightly affected as a result of the treatments of the plant extracts. Adults of the aphid parasite D. Rapae and the whitefly parasite E. Mundus were exposed to the plant extracts via feeding on treated honey droplets or parasitized treated hosts. Mortality percentages of D. Rapae fed on honey contaminated with plant extracts were 50 and 80% for extracts of Melia fruits in ethanol and in petroleum ether, respectively. Mortalities in parasites developed in hosts treated with plant extracts of Neem fruits in ethanol and Melia flowers in petroleum ether in were 33.3 and 81.5%, respectively. Similar results were obtained when E. Mundus received the same treatments of the plant extracts.  相似文献   
35.
Six blackberry or hybrid berry cultivars and 19 raspberry cultivars were assessed for their infectibility with, and sensitivity to, graft inoculation with 10 distinct viruses found infecting Rubus in the UK. Cultivars were grafted with each of, two isolates of the pollen borne raspberry bushy dwarf virus (RBDV), five aphid borne viruses: black raspberry necrosis, raspberry leaf mottle (RLMV), raspberry leaf spot (RLSV), rubus yellow net and raspberry vein chlorosis (RVCV); and isolates of the nematode transmitted nepoviruses, arabis mosaic, raspberry ringspot, strawberry latent ringspot and tomato black ring. All tested cultivars were infectible with a resistance breaking isolate of RBDV but only about half of that number with the Scottish type isolate of the virus. The raspberry cvs Autumn Bliss, and occasionally Glen Garry and Glen Prosen, developed leaf yellowing symptoms following infection with RBDV, but none of the other infected cultivars showed obvious leaf symptoms when kept in a heated glasshouse during the growing season. All tested cultivars were infectible with each of the four viruses transmitted in nature by the aphid, Amphorophora idaei. Most were infected symptomlessly, but seven cultivars developed severe leaf spotting symptoms due to infection with RLMV or RLSV. All but one of the raspberry cultivars were infectible with RVCV, which is transmitted in nature by the aphid Aphis idaei, and almost all infected plants developed leaf symptoms; only one of the hybrid berry or blackberry cultivars tested was infected with RVCV. In tests with the four nepoviruses, all tested cultivars, except Tummelberry, were infectible with at least one or more of these viruses. However, cultivars responded differently to challenge inoculation with different isolates of individual nepoviruses. Several cultivars developed chlorotic leaf mottling following infection with some nepovirus isolates. The implications of these results for virus control are discussed in the light of the changing pattern of virus and virus vector incidence in the UK.  相似文献   
36.
Cowpea aphid‐borne mosaic virus (CABMV) causes major diseases in cowpea and passion flower plants in Brazil and also in other countries. CABMV has also been isolated from leguminous species including, Cassia hoffmannseggii, Canavalia rosea, Crotalaria juncea and Arachis hypogaea in Brazil. The virus seems to be adapted to two distinct families, the Passifloraceae and Fabaceae. Aiming to identify CABMV and elucidate a possible host adaptation of this virus species, isolates from cowpea, passion flower and C. hoffmannseggii collected in the states of Pernambuco and Rio Grande do Norte were analysed by sequencing the complete coat protein genes. A phylogenetic tree was constructed based on the obtained sequences and those available in public databases. Major Brazilian isolates from passion flower, independently of the geographical distances among them, were grouped in three different clusters. The possible host adaptation was also observed in fabaceous‐infecting CABMV Brazilian isolates. These host adaptations possibly occurred independently within Brazil, so all these clusters belong to a bigger Brazilian cluster. Nevertheless, African passion flower or cowpea‐infecting isolates formed totally different clusters. These results showed that host adaptation could be one factor for CABMV evolution, although geographical isolation is a stronger factor.  相似文献   
37.
The cotton aphid is one of the most serious pests of greenhouse vegetable crops worldwide. It is difficult to control because field populations usually include simultaneously several insect developmental stages. The current research evaluated an isolate (CS625) of Lecanicillium attenuatum, a fungal pathogen of aphids, as to its virulence against different developmental stages of cotton aphid, Aphis gossypii. The influence on mortality of several other factors also was examined: (a) insect moulting, (b) the number of conidia attached to insect cuticles and (c) germination rates of conidia on cuticles of aphids at various developmental stages. Mortality of cotton aphids treated with L. attenuatum conidia varied according to the developmental stage of the host, i.e. the LT50s with third-instar nymphs and adults was shorter than with first-instar nymphs. The number of spores attached to the surface of first-instar nymphs was approximately one-half of that on third-instar nymphs and adults. Also, the level of spore germination on the surface of first-instar nymphs was lower than on the surface of other stages of the aphid. After moulting, the numbers of conidia attached to new insect cuticles were less than on exuviae. These results suggest that early nymphal stages of cotton aphids may escape fungal disease due, at least in part, to a combination of three factors: low numbers of conidia attached to their cuticles; low levels of conidial germination and rapid ecdyses, which removed conidia before their germ tubes penetrated the host hemolymph.  相似文献   
38.
39.
Long days (short nights) (LD 16:8) and high temperatures (> 15°C) have an apterizing effect on the short day (LD 12:12) induced, presumptive gynopara of Aphis fabae. Transfer of presumptive gynoparae to long days (15°C) or to 25°C (short days) at varying times during postnatal development demonstrate that the adult form is determined by the second day of the second instar, i.e. 5 days after birth at 15°C. Transfer on day 1 induces maximum apterization with the proportion of aphids affected decreasing with age at transfer.Apterization induced by long days immediately after birth can, to some extent, be cancelled by return to short days but only up to day 4. Thus long days are morphogenetically more potent than short days at the beginning of larval development. At temperatures above 15°C the proportion of aphids apterized increases almost linearly.Apterized insects can be distinguished from juvenilized insects in the fifth-instar. Topical application of juvenile hormone (JH) induces both apterization and juvenilization of presumptive gynoparae but at different times during larval development, JH treatment during the early-instars promotes apterization but induces little juvenilization, whereas maximum juvenilization, without apterization, is produced by middle-instar treatment. The apterizing effects of JH are, thus, not due to its neotenic action.The response profile of JH-induced apterization is similar to that observed with long days and 25°C. It is suggested that such conditions increase endogenous JH levels in A. fabae. The three naturally occurring JH's differ in activity in the order JH I > JH II > JH III. Both long-day and JH-apterized insects switch from the normal ovipara production of the adult gynopara to vivipara production.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号