首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4778篇
  免费   313篇
  国内免费   571篇
  5662篇
  2024年   33篇
  2023年   118篇
  2022年   116篇
  2021年   145篇
  2020年   163篇
  2019年   235篇
  2018年   232篇
  2017年   191篇
  2016年   180篇
  2015年   132篇
  2014年   242篇
  2013年   349篇
  2012年   147篇
  2011年   237篇
  2010年   200篇
  2009年   233篇
  2008年   227篇
  2007年   245篇
  2006年   208篇
  2005年   184篇
  2004年   188篇
  2003年   168篇
  2002年   165篇
  2001年   99篇
  2000年   99篇
  1999年   109篇
  1998年   83篇
  1997年   68篇
  1996年   74篇
  1995年   62篇
  1994年   64篇
  1993年   60篇
  1992年   58篇
  1991年   46篇
  1990年   38篇
  1989年   45篇
  1988年   45篇
  1987年   23篇
  1986年   26篇
  1985年   34篇
  1984年   44篇
  1983年   42篇
  1982年   36篇
  1981年   27篇
  1980年   35篇
  1979年   29篇
  1978年   21篇
  1977年   17篇
  1976年   12篇
  1973年   10篇
排序方式: 共有5662条查询结果,搜索用时 11 毫秒
241.
以额济纳荒漠河岸胡杨(Populus euphratica)为研究对象,利用LI-6400光合测定仪于2005年5~9月份观测了胡杨叶片气体交换数据,研究了胡杨叶片气孔导度与光合速率、光合有效辐射与光合速率之间的关系.结果表明:(1)胡杨叶片净光合速率随气孔导度的增大而升高,但当气孔导度增加到一定值后,光合速率的增加变缓慢直至平稳,并主要是非气孔限制因素造成的;Ball-Berry模型(B-B模型)能够很好地描述气孔导度与光合速率之间的关系(R2=0.92).(2)叶片净光合速率随着有效辐射的变化符合非直角双曲线规律(R2=0.99).(3)B-B模型和非直角双曲线光合模型耦合后模拟值与观测值之间存在很好的正相关性(r=0.93),但耦合模型的模拟值还是较实测值偏大.因此,在干旱区还必须考虑水分限制因素对气孔开闭的控制作用,进一步构建适合干旱区生态系统特点的水-碳耦合循环机理模型.  相似文献   
242.
The major objective of this work was to explore the quantitative structure-activity relationship (QSAR) of hydroxyl-substituent Schiff bases in protecting human erythrocytes against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)- induced hemolysis, in which 10 Schiff bases including 4-phenyliminomethylphenol (PIH); 4-((4-hydroxybenzylidene) amino)phenol (PAH); 2-methoxy-4-((4-hydroxyphenylimino)methyl)phenol (PMH); 4-((furan-2-ylmethylene)amino) phenol (FAH); 4-((4-N,N-dimethylaminobenzylidene)amino)phenol (PDH); 2-((4-N,N-dimethylaminobenzylidene)amino) phenol (ODH); 2-(naphthalene-1-yliminomethyl)phenol (NAH); 2-(benzyliminomethyl)phenol (BPH); 1,4-di((2-hydroxyphenylimino) methyl)benzene (DOH); 1,4-di((4-hydroxyphenylimino)methyl)benzene DPH, were available for this in vitro experimental system. The results revealed that the radical-scavenging activity of the --OH attached to the para position of methylene in Schiff base was much lower than that attached to the ortho position of the N atom. The large conjugate system and low steric hindrance in the framework of Schiff base benefit the Schiff base to trap radicals. Meanwhile, since a Schiff base, even without any substituent, can also play an antioxidative role in this experimental system, the QSAR results suggest that hydroxyl-substituent Schiff bases are potential drugs in the treatment of radical-related diseases, and provide more information for designing novel drugs.  相似文献   
243.
COX-2 is a well-known drug target in inflammatory disorders. COX-1/COX-2 selectivity of NSAIDs is crucial in assessing the gastrointestinal side effects associated with COX-1 inhibition. Celecoxib, rofecoxib, and valdecoxib are well-known specific COX-2 inhibiting drugs. Recently, polmacoxib, a COX-2/CA-II dual inhibitor has been approved by the Korean FDA. These COXIBs have similar structure with diverse activity range. Present study focuses on unraveling the mechanism behind the 10-fold difference in the activities of these sulfonamide-containing COXIBs. In order to obtain insights into their binding with COX-2 at molecular level, molecular dynamics simulations studies, and MM-PBSA approaches were employed. Further, per-residue decomposition of these energies led to the identification of crucial amino acids and interactions contributing to the differential binding of COXIBs. The results clearly indicated that Leu338, Ser339, Arg499, Ile503, Phe504, Val509, and Ser516 (Leu352, Ser353, Arg513, Ile517, Phe518, Val523, and Ser530 in PGHS-1 numbering) were imperative in determining the activity of these COXIBs. The binding energies and energy contribution of various residues were similar in all the three simulations. The results suggest that hydrogen bond interaction between the hydroxyl group of Ser516 and five-membered ring of diarylheterocycles augments the affinity in COXIBs. The SAR of the inhibitors studied and the per-residue energy decomposition values suggested the importance of Ser516. Additionally, the positive binding energy obtained with Arg106 explains the binding of COXIBs in hydrophobic channel deep in the COX-2 active site. The findings of the present work would aid in the development of potent COX-2 inhibitors.  相似文献   
244.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
245.

With the view of incorporating quaternary ammonium salts (QAs) in marine paints, nineteen of these were tested against a community of marine bacteria, at a temperature and salinity close to those of seawater. The concentration of QAs and the length of the main substituting chain are the main parameters affecting the growth and adhesion of bacteria, but the nature of (i) the other chains, (ii) the counter‐ion and (iii) the rings when inserted in the QA molecule also influenced the bacteria. Increasing the concentration of the QAs decreased the growth rate of the bacteria, the maximum cell density at the plateau and the rate of adhesion. The effect of increasing the length of the main chain depended on the range of carbon numbers. Below 7 carbon atoms, the growth rate was not significantly modified, but the numbers of cells at the plateau increased in contrast with the adhesion rate which decreased rapidly. Increasing the length of the chain to between 7 and 16 carbon atoms resulted in a decrease in the growth rate, a decrease and then a stabilisation in the numbers of cells at the plateau and no further change in the adhesion rate. Possibly an increase in growth rate, adhesion rate and in the numbers of cells at the plateau may occur above 16 carbon atoms. In contrast, the length of the other chains influenced positively the cell concentration at the plateau, and more generally the efficiency of QAs decreased substantially when these chains had the same numbers of carbon atoms. QAs with iodide as counter‐ion were more effective than those with chloride or bromide and phenyl was more effective than benzyl as rings inserted in QAs. The minimum inhibitory concentrations (MIC) were often very high if compared to standard methods with laboratory strains, and this can be tentatively explained by the dominance of Gram— bacteria in the community assayed, the development of resistant strains in the cultures used with time and the presence of organic matter in the culture medium.  相似文献   
246.
During evolution of proteins from a common ancestor, one functional property can be preserved while others can vary leading to functional diversity. A systematic study of the corresponding adaptive mutations provides a key to one of the most challenging problems of modern structural biology – understanding the impact of amino acid substitutions on protein function. The subfamily-specific positions (SSPs) are conserved within functional subfamilies but are different between them and, therefore, seem to be responsible for functional diversity in protein superfamilies. Consequently, a corresponding method to perform the bioinformatic analysis of sequence and structural data has to be implemented in the common laboratory practice to study the structure–function relationship in proteins and develop novel protein engineering strategies. This paper describes Zebra web server – a powerful remote platform that implements a novel bioinformatic analysis algorithm to study diverse protein families. It is the first application that provides specificity determinants at different levels of functional classification, therefore addressing complex functional diversity of large superfamilies. Statistical analysis is implemented to automatically select a set of highly significant SSPs to be used as hotspots for directed evolution or rational design experiments and analyzed studying the structure–function relationship. Zebra results are provided in two ways – (1) as a single all-in-one parsable text file and (2) as PyMol sessions with structural representation of SSPs. Zebra web server is available at http://biokinet.belozersky.msu.ru/zebra.  相似文献   
247.
Conclusions Current neurochemical studies of the NMDA receptor macromolecular complex are yielding new insights into the interactions of the subunits of this complex and the associated potential clinical benefits of selective modulation of these subnits. Such studies offer the great potential for a new generation of pharmacotherapies for a wide range of CNS disorders, including stroke, a condition for which there is currently no effective pharmacological treatment. However, it is essential to understand that the first generation products in this area may not be optimal pharmacotherapies, such that haracterization of possible receptor subtypes and understanding the molecular biology of the component proteins of the receptor complex will be crucial in the design of the optimal pharmacological modulators of the NMDA receptor complex.Special issue dedicated to Dr. Erminio Costa  相似文献   
248.
249.
A new series of 1,4-dihydropyridine derivatives (2a–h, 3a–e, and 4a–e) were systematically designed and synthesized via ultrasound irradiation methods with easy work-up and good yields. Compounds structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectra. The synthesized compounds were screened for both antimicrobial and anticoagulant activities. Compound 2e (MIC: 0.25?μg/mL) was highly active against Escherichia coli and compound 2c (MIC: 0.5?μg/mL) was also highly active against Pseudomonas aeruginosa compared with ciprofloxacin. (MIC: 1?μg/mL) The antifungal activity of 2c (MIC: 0.5?μg/mL) against Candida albicans was high relative to that of clotrimazole (MIC: 1?μg/mL). Anticoagulant activity was determined by activated partial thromboplastin time (APTT) and prothrombin time (PT) coagulation assays. Compound 4-(4-hydroxyphenyl)-2,6-dimethyl-N3,N5-bis(5-phenyl-1,3,4-thiadiazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxamide 3d (>1000?s in APTT assays) was highly active in anticoagulant screening compared with the reference of heparin.Cytotoxicity was evaluated using HepG2 (liver), HeLa (cervical), and MCF-7 (breast) cancer cell lines, with high toxicities observed for 2c (GI50?=?0.02?μm) against HeLa cell line and 2e (GI50?=?0.03?μm) equipotant against MCF-7 cell line. Therefore, the compounds 2e, 2c and 3d can serve as lead molecules for the development of new classes of antimicrobial and anticoagulant agent.  相似文献   
250.
B‐cell lymphoma extra‐large protein (BclXL) serves as an apoptotic repressor by virtue of its ability to recognize and bind to BH3 domains found within a diverse array of proapoptotic regulators. Herein, we investigate the molecular basis of the specificity of the binding of proapoptotic BH3 ligands to BclXL. Our data reveal that while the BH3 ligands harboring the LXXX[A/S]D and [R/Q]XLXXXGD motif bind to BclXL with high affinity in the submicromolar range, those with the LXXXGD motif afford weak interactions. This suggests that the presence of a glycine at the fourth position (G+4)—relative to the N‐terminal leucine (L0) within the LXXXGD motif—mitigates binding, unless the LXXXGD motif also contains arginine/glutamine at the ?2 position. Of particular note is the observation that the residues at the +4 and ?2 positions within the LXXX[A/S]D and [R/Q]XLXXXGD motifs appear to be energetically coupled—replacement of either [A/S]+4 or [R/Q]‐2 with other residues has little bearing on the binding affinity of BH3 ligands harboring one of these motifs. Collectively, our study lends new molecular insights into understanding the binding specificity of BH3 ligands to BclXL with important consequences on the design of novel anticancer drugs. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 573–582, 2014.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号