首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   11篇
  国内免费   2篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   4篇
  2018年   11篇
  2017年   7篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   13篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   12篇
  2008年   9篇
  2007年   14篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1973年   1篇
排序方式: 共有195条查询结果,搜索用时 187 毫秒
61.
Through the accumulation of adaptive mutations, HIV-2 originated from SIVsm. To identify these evolutionary changes, a humanized mouse model recapitulated the process that likely enabled this cross-species transmission event. Various adaptive mutations arose, as well as increased virulence and CD4+ T-cell decline as the virus was passaged in humanized mice.  相似文献   
62.
63.
Although athletes with unilateral below-the-knee amputations (BKAs) generally use their affected leg, including their prosthesis, as their take-off leg for the long jump, little is known about the spring-like leg behavior and stiffness regulation of the affected leg. The purpose of this study was to investigate vertical stiffness during one-legged hopping in an elite-level long jump athlete with a unilateral BKA. We used the spring-mass model to calculate vertical stiffness, which equals the ratio of maximum vertical ground reaction force to maximum center of mass displacement, while the athlete with a BKA hopped on one leg at a range of frequencies. Then, we compared the vertical stiffness of this athlete to seven non-amputee elite-level long-jumpers. We found that from 1.8 to 3.4 Hz, the vertical stiffness of the unaffected leg for an athlete with a BKA increases with faster hopping frequencies, but the vertical stiffness of the affected leg remains nearly constant across frequencies. The athlete with a BKA attained the desired hopping frequencies at 2.2 and 2.6 Hz, but was unable to match the lowest (1.8 Hz) and two highest frequencies (3.0 and 3.4 Hz) using his affected leg. We also found that at 2.5 Hz, unaffected leg vertical stiffness was 15% greater than affected leg vertical stiffness, and the vertical stiffness of non-amputee long-jumpers was 32% greater than the affected leg vertical stiffness of an athlete with a BKA. The results of the present study suggest that the vertical stiffness regulation strategy of an athlete with a unilateral BKA is not the same in the unaffected versus affected legs, and compared to non-amputees.  相似文献   
64.
In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump.  相似文献   
65.
The pressure‐induced unfolding of the mutant C112S azurin from Pseudomonas aeruginosa was monitored both under steady state and dynamic conditions. The unfolding profiles were obtained by recording the spectral shift of the fluorescence emission as well as by phosphorescence intensity measurements. We evaluated the difference in free energy, ΔG, as a function of pressure and temperature. The dependence of ΔG on temperature showed concave profile at all pressures studied. A positive heat capacity change of about 4.3 kJ mol?1 deg?1 fitted all the curves. The volume change of the reaction showed a moderate dependence on temperature when compared with other proteins previously studied. The kinetic activation parameters (ΔV*, ΔH*, ΔS*) were obtained from upward and downward pressure‐jump experiments and used to characterize the volumetric and energetic properties of the transition state between native and unfolded protein. Our findings suggest that the folding and unfolding reaction paths passed through different transition states. The change in the phosphorescence lifetime with pressure pointed out that pressure‐induced unfolding occurred within two steps: the first leading to an increased protein flexibility, presumably caused by water penetration into the protein. Major structural changes of the tryptophan environment occurred in a second step at higher pressures. Proteins 2014; 82:1787–1798. © 2014 Wiley Periodicals, Inc.  相似文献   
66.
Biological Jumping Mechanism Analysis and Modeling for Frog Robot   总被引:1,自引:0,他引:1  
This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-offphase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm. The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of frog.  相似文献   
67.
Communities of endophytic fungi in leaves of Manna ash (Fraxinus ornus) were examined to both the north and south of the Alps, i.e. within and beyond the native range of this tree species. Almost all leaves examined had been colonized by endophytic fungi. One hundred and two morphotypes were found, and 62 of them were identified to genus or species level using ITS sequencing and micromorphology. Venturia orni was most frequent and occurred in almost one third (32%) of the 1536 examined leaf segments. It was five times more abundant than Colletotrichum acutatum, the second most frequent endophyte. Other frequently isolated endophytes include Paraconiothyrium sp. 1, Mycosphaerella aurantia, Septoria cretae, Botryosphaeria dothidea and Boeremia exigua. The ash dieback pathogen was not isolated. The endophyte communities differed between the north and south of the Alps and the individual tree types had a distinct influence within sites.  相似文献   
68.
The gliding filaments of the blue-green alga Phormidium uncinatum stop their movement almost instantaneously when transfered from their growth pH of 7.2 into a buffer 4.5 or 12.5. A pH jump into the range between 5.6 and 12.0 induces no visible response while in the range between 4.9 and 5.5 the organisms reverse the direction of their movement. The pH jump is believed to simulate an early step during the sensory transduction chain of the photophobic response which eventually results in a reversal of movement.One of the subsequent steps is the inversion of an electric potential gradient existing between the front and rear ends of a filament which dictates the direction of movement. A similar reversal of the naturally existing potential gradient can be provoked by switching on an external do field when the filaments move towards the anode or switching it off when the filaments glide in the opposite direction. Implications of these results on the current model of sensory transduction of the photophobic response in Phormidium uncinatum are being discussed.  相似文献   
69.
The laser-induced pH jump (Gutman, M. and Huppert, D.J. (1979) Biochem. Biophys. Methods 1, 9–19) has a time resolution capable of measuring the diffusion-controlled rate constant of proton binding. In the present study we employed this technique for measuring the kinetics of protonation-deprotonation of surface groups of macromolecules.The heterogeneous surface of proteins excludes them from serving as a simple model, therefore we used micelles of a neutral detergent (Brij 58) as a high molecular weight structure. The charge was varied by the addition of a low concentration of sodium dodecyl sulfate and the surface group with which the protons react was an adsorbed pH indicator (bromocresol green or neutral red).The dissociation of a proton from adsorbed bromocresol green is slower than that from free indicator. This effect is attributed to the enhanced stabilization of the acid form of the indicator in the pallisade region of the micelle. The pK shift of bromocresol green adsorbed on neutral micelles is thus quantitatively accounted for by the decreased rate of proton dissociation. Indicators such as neutral red, which are more lipid soluble in their alkaline form, do not exhibit such decelerated proton dissociation in their adsorbed state nor a pK shift on adsorption to neutral micelles.The protonation of an indicator is a diffusion-controlled reaction, whether it is free in solution or adsorbed on micelles. By varying the electric charge of the micelle this rate can be accelerated or decelerated depending on the total charge of the micelle. The micellar charge calculated from this method was corroborated by other measurements which rely only on equilibrium parameters.The high time resulation of the pH jump is exemplified by the ability to estimate the diffusion coefficient of protons through the hydrated shell of the micelle.  相似文献   
70.
A theoretical approach to transport noise in kinetic systems, which has recently been developed, is applied to electric fluctuations around steady-states in membrane channels with different conductance states. The channel kinetics may be simple two state (open-closed) kinetics or more complicated. The membrane channel is considered as a sequence of binding sites separated by energy barriers over which the ions have to jump according to the usual single-file diffusion model. For simplicity the channels are assumed to act independently. In the special case of ionic movement fast compared with the channel open-closed kinetics the results agree with those derived from the usual Master equation approach to electric fluctuations in nerve membrane channels.For the simple model of channels with one binding site and two energy barries the coupling between the fluctuations coming from the open-closed kinetics and from the jump diffusion is investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号