首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2199篇
  免费   95篇
  国内免费   77篇
  2024年   6篇
  2023年   39篇
  2022年   36篇
  2021年   75篇
  2020年   64篇
  2019年   74篇
  2018年   83篇
  2017年   39篇
  2016年   47篇
  2015年   55篇
  2014年   106篇
  2013年   104篇
  2012年   75篇
  2011年   75篇
  2010年   80篇
  2009年   89篇
  2008年   100篇
  2007年   104篇
  2006年   89篇
  2005年   70篇
  2004年   67篇
  2003年   63篇
  2002年   60篇
  2001年   49篇
  2000年   39篇
  1999年   40篇
  1998年   52篇
  1997年   38篇
  1996年   37篇
  1995年   36篇
  1994年   39篇
  1993年   34篇
  1992年   26篇
  1991年   22篇
  1990年   20篇
  1989年   25篇
  1988年   23篇
  1987年   27篇
  1986年   19篇
  1985年   24篇
  1984年   63篇
  1983年   31篇
  1982年   25篇
  1981年   25篇
  1980年   19篇
  1979年   29篇
  1978年   6篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
排序方式: 共有2371条查询结果,搜索用时 15 毫秒
151.
Tomofumi Chiba  Yutaka Shibata 《BBA》2019,1860(12):148090
Photosystem I (PSI) and photosystem II (PSII) play key roles in photoinduced electron-transfer reaction in oxygenic photosynthesis. Assemblies of these PSs can be initiated by illumination of the etiolated seedlings (greening). The study aimed to identify specific fluorescence spectral components relevant to PSI and PSII assembly intermediates emerging in greening seedlings of Zea mays, a typical C4 plant. The different PSII contents between the bundle sheath (BS) and mesophyll (M) cells were utilized to spectrally isolate the precursors to PSI and PSII. The greening Zea mays leaf thin sections were observed with the cryogenic microscope combined with a spectrometer. With the aid of the singular-value decomposition analysis, we could identify four independent fluorescent species, SAS677, SAS685, SAS683, and SAS687, named after their fluorescence peak wavelengths. SAS677 and SAS685 are the dominant components after the 30-minute greening, and the distributions of these components showed no clear differences between M and BS cells, indicating immature cell differentiation in this developing stage. On the other hand, the 1-hour greening resulted in reduced distributions of SAS683 in BS cells leading us to assign this species to PSII precursors. The 2-hour greening induced the enrichment of SAS687 in BS cells suggesting its PSI relevance. Similarity in the peak wavelengths of SAS683 and the reported reaction center of PSII implied their connection. SAS687 showed an intense sub-band at around 740 nm, which can be assigned to the emission from the red chlorophylls specific to the mature PSI.  相似文献   
152.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
153.
Hydrogenases are metalloproteins capable of catalyzing the interconversion between molecular hydrogen and protons and electrons. The iron–sulfur clusters within the enzyme enable rapid relay of electrons which are either consumed or generated at the active site. Their unparalleled catalytic efficiency has attracted attention, especially for potential use in H2 production and/or fuel cell technologies. However, there are limitations to using hydrogenases, especially due to their high O2 sensitivity. The subclass, called [FeFe] hydrogenases, are particularly more vulnerable to O2 but proficient in H2 production. In this review, we provide an overview of mechanistic and protein engineering studies focused on understanding and enhancing O2 tolerance of the enzyme. The emphasis is on ongoing studies that attempt to overcome O2 sensitivity of the enzyme while it catalyzes H2 production in an aerobic environment. We also discuss pioneering attempts to utilize the enzyme in biological H2 production and other industrial processes, as well as our own perspective on future applications.  相似文献   
154.
In this work a total of 12 carbazoles and hydrazone-bridged thiazole-pyrrole derivatives have been identified as new competitive inhibitors of tyrosinase. Carbazole derivative with 2-benzoimidazole substitution showed most potent inhibition in the series. Other carbazole derivatives containing benzothiazole and benzoxazole substitutions showed comparable levels of tyrosinase inhibition. The hydrazone derivatives also showed potent tyrosinase inhibitory activity with comparable Ki values except one with fluoride at its terminal position. Kinetic studies showed competitive inhibition of tyrosinase by all compounds that increased the substrate Km without changing the Vmax value. Moreover, experimental evidence suggests that the target compounds specifically bind to the binuclear copper center of the tyrosinase active site in an apparent mono-dentate fashion. Carbazoles and hydrazones are new and emerging classes of compounds as tyrosinase inhibitors that may provide new structural avenues to discovery of drugs targeting the treatment of hyperpigmentation and related dermatological disorders.  相似文献   
155.
156.
The chirality of the title heterocycles is discussed considering their genesis by desymmetrization of the corresponding adamantanes. Some rules for the specification of the absolute configurations of the enantiomers (R or S) for this type of compounds are proposed. © 1996 Wiley-Liss, Inc.  相似文献   
157.
The COVID-19 pandemic led to the reorganization of health care in several countries, including Brazil. Inborn Errors of Metabolism (IEM) are a group of rare and difficult to diagnose genetic diseases caused by pathogenic variants in genes that code for enzymes, cofactors, or structural proteins affecting different metabolic pathways. The aim of this study was to evaluate how COVID-19 affected the diagnosis of patients with IEM during the first year of the pandemic in Brazil comparing two distinct periods: from March 1st, 2019 to February 29th, 2020 (TIME A) and from March 1st, 2020 to February 28th, 2021 (TIME B), by the analysis of the number of tests and diagnoses performed in a Reference Center in South of Brazil. In the comparison TIME A with TIME B, we observe a reduction in the total number of tests performed (46%) and in the number of diagnoses (34%). In both periods analyzed, mucopolysaccharidoses (all subtypes combined) was the most frequent LD suspected and/or confirmed. Our data indicates a large reduction in the number of tests requested for the investigation of IEM and consequently a large reduction in the number of diagnoses caused by the COVID-19 pandemic leading to a significant underdiagnosis of IEM.  相似文献   
158.
Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.  相似文献   
159.
The nucleolus of the human Sertoli cell displays a spontaneous segregation of its components and has only one or 2 large fibrillar centers. The 3-dimensional reconstruction and quantitative analysis of its components was undertaken using a Quantimet 900 image analysis system in order to define the spatial relationships between the dense fibrillar component and the fibrillar center and especially to investigate whether threads of dense fibrillar component exist independently, without being linked to a fibrillar center. Our 3D reconstructions demonstrated that the dense fibrillar threads or sheets were never independent of fibrillar centers. These structures belonged to a continuous network that joined the layer of dense fibrils surrounding the fibrillar center. When the nucleolus contained 2 different-sized fibrillar centers, quantitative analysis showed that there was a proportional relationship between the volume of the dense fibrillar component and the volume of the fibrillar center. These data, compared with those previously obtained by means of autoradiographic techniques, suggest that the rDNA-containing chromatin passes through the fibrillar center and unwinds from there into the dense fibrillar component.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号