首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1925篇
  免费   442篇
  国内免费   64篇
  2024年   4篇
  2023年   52篇
  2022年   32篇
  2021年   57篇
  2020年   118篇
  2019年   149篇
  2018年   125篇
  2017年   141篇
  2016年   126篇
  2015年   143篇
  2014年   156篇
  2013年   153篇
  2012年   109篇
  2011年   130篇
  2010年   95篇
  2009年   108篇
  2008年   113篇
  2007年   85篇
  2006年   65篇
  2005年   75篇
  2004年   68篇
  2003年   47篇
  2002年   47篇
  2001年   43篇
  2000年   36篇
  1999年   20篇
  1998年   36篇
  1997年   17篇
  1996年   17篇
  1995年   12篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有2431条查询结果,搜索用时 15 毫秒
81.
Antipredator responses often involve changes in several phenotypic traits and these changes interactively influence fitness. However, gaining insight into how the overall fitness effect of the overall response comes about is notoriously difficult. One promising avenue is to manipulate a single defensive trait and observe how that modifies fitness as well as the expression of other inducible responses. In chemically‐defended animals, toxins are likely to be costly to produce but it is still unknown how their depletion influences other characteristics. In the present study, we artificially depleted bufadienolide toxin stores in common toad (Bufo bufo) tadpoles, and assessed the effect of this with respect to the interaction with predator presence and limited food availability. We found that toxin depletion in tadpoles did not significantly affect any of the measured life‐history traits. Tadpoles in the predator treatment exhibited an elevated development rate, although this was only apparent when food availability was limited. Also, body mass at metamorphosis was lower in tadpoles exposed to chemical cues indicating a predation threat and when food availability was limited. These results provide evidence that, in larval common toads, the expression of inducible defences may incur fitness costs, whereas chemical defences are either expressed constitutively or, if inducible, elevated toxin production has negligible costs.  相似文献   
82.
High sea surface temperature accompanied by high levels of solar irradiance is responsible for the disruption of the symbiosis between cnidarians and their symbiotic dinoflagellates from the genus Symbiodinium. This phenomenon, known as coral bleaching, is one of the major threats affecting coral reefs around the world. Because an important molecular trigger to bleaching appears related to the production of reactive oxygen species (ROS), it is critical to understand the function of the antioxidant network of Symbiodinium species. In this study we investigated the response of two Symbiodinium species, from contrasting environments, to a chemically induced oxidative stress. ROS produced during this oxidative burst reduced photosynthesis by 30 to 50% and significantly decreased the activity of superoxide dismutase. Lipid peroxidation levels and carotenoid concentrations, especially diatoxanthin, confirm that these molecules act as antioxidants and contribute to the stabilization of membrane lipids. The comparative analysis between the two Symbiodinium species allowed us to highlight that Symbiodinium sp. clade A temperate was more tolerant to oxidative stress than the tropical S. kawagutii clade F. These differences are very likely a consequence of adaptation to their natural environment, with the temperate species experiencing conditions of temperature and irradiance much more variable and extreme.  相似文献   
83.
Decisions relating to the orientation of movement by animals and how this translates into movement patterns can occur at multiple spatial scales simultaneously, but this interaction is poorly understood for many groups of animals. Using the tracks left by moving snakes in their sandy habitat, we studied the movement paths of the African snake Bitis schneideri (Namaqua dwarf adder) for evidence of broad‐scale directional persistence and short‐range avoidance of exposure. Although snakes clearly displayed directional persistence, they preferentially moved to nearby shrubs, thereby minimizing exposure to solar and thermal radiation and/or predation. Thus, snakes made decisions relating to orientation at a minimum of two scales, the interaction of which resulted in snakes moving ≈17% (mean straightness index = 0.85) further than the simple broad‐scale straight‐line distance. We assert that the actual path chosen by moving snakes represents a trade‐off of various costs and risks that include risk of predation, exposure to the elements, time and energy expenditure. Our study highlights the need for cognizance of the possibility of the scale dependence of orientation and movement in studies of snake movement, and adds to a growing literature demonstrating previously unrecognized behavioural complexity in snakes.  相似文献   
84.
The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low‐conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources.  相似文献   
85.
Eco‐evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco‐evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco‐evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host–virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade‐off between host resistance and growth then maintained host diversity over time (trade‐off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations.  相似文献   
86.
Life‐history theory assumes that reproduction and lifespan are constrained by trade‐offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta‐analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non‐breeders reveal that transition to the reproductive state is associated with a step‐change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally‐derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life‐history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life‐history trade‐offs.  相似文献   
87.
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human‐mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three‐spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet.  相似文献   
88.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   
89.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   
90.
The processes that occur at the micro‐scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long‐term in situ study of coral calcification rates, photo‐physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration []cf in conjunction with temperature and DICcf. Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize []cf at species‐dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2‐driven warming and acidification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号