首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   96篇
  国内免费   86篇
  1968篇
  2024年   6篇
  2023年   16篇
  2022年   18篇
  2021年   26篇
  2020年   43篇
  2019年   42篇
  2018年   45篇
  2017年   43篇
  2016年   36篇
  2015年   39篇
  2014年   57篇
  2013年   173篇
  2012年   49篇
  2011年   53篇
  2010年   53篇
  2009年   67篇
  2008年   58篇
  2007年   68篇
  2006年   72篇
  2005年   92篇
  2004年   73篇
  2003年   95篇
  2002年   85篇
  2001年   57篇
  2000年   49篇
  1999年   45篇
  1998年   51篇
  1997年   47篇
  1996年   42篇
  1995年   35篇
  1994年   35篇
  1993年   47篇
  1992年   26篇
  1991年   31篇
  1990年   31篇
  1989年   26篇
  1988年   24篇
  1987年   20篇
  1986年   17篇
  1985年   11篇
  1984年   9篇
  1983年   10篇
  1982年   12篇
  1981年   9篇
  1980年   11篇
  1979年   10篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有1968条查询结果,搜索用时 15 毫秒
11.
The 1H-NMR spectrum of cucumber basic blue protein (CBP) has been recorded. Examination of the spectrum of the reduced protein suggests that one or more sidechains exist in conformations which interconvert slowly at ambient temperatures. His 39, His 84 and Met 89 are identified as copper ligands by redox titration and by amino acid sequence homology with plastocyanin and azurin. The importance of a Phe sidechain close to the Met ligand in the potential blue copper site is confirmed. Broadening of His ligand resonances at elevated temperatures reveals an exchange process at the reduced copper centre.  相似文献   
12.
Activities of Phosphorylase, glyceraldehyde-3 -phosphate dehydrogenase, lactate dehydrogenase, malate dehydrogenase and succinate dehydrogenase in the rat endometrial tissue are significantly inhibited by an intrauterine copper device, while it stimulated glucose-6-phosphate dehydrogenase activity. The copper device decreased the lactate/pyruvate ratio in the tissue; pyruvate utilizationin vitro by the rat endometrium is also blocked by copper. These findings suggested that the normal carbohydrate metabolism of the tissue may be affected in presence of copper, thus resulting in a change of the endometrial function, which may be one of the factors responsible for the contraceptive and pharmacological action of an intrauterine copper device.  相似文献   
13.
Thyroid hormones are involved in copper and zinc distribution in rat tissues. We examined the influence of thyroparathyroidectomy (TPTY) and of a replacement therapy by T4 on Cu and Zn organ distribution. MT levels were also measured both in basal conditions and after induction by cadmium. The results confirm that a lack of T4 modified Cu and Zn in serum and tissues. In serum, TPTY increased Cu (+15%) and ceruloplasmin (+18%), and decreased Zn (−18%). In tissues, Cu was altered in liver (+13%), kidney (−24%), heart (−16%) duodenum (−18%), and Zn in liver (+25%) and kidney (−10%). The soluble fractions (100,000 g supernatant) were mainly affected in liver and kidney, and the subcellular fractions in heart and duodenum. MT levels were modified in basal conditions only in liver (+57%) and kidney (−36%). T4 administration partially prevented the effect of TPTY on both elements and MT concentrations. Therefore, no evidence is provided for a direct role of T4 in the metabolism of MT in a way comparable to the effects of glucocorticoids. However, MT could mediate the consequences of TPTY on metal distribution in certain organs, such as liver and kidney.  相似文献   
14.
在过量铜或锌胁迫下,独立培养的外生菌根菌牛乳牛肝菌(Suillus  相似文献   
15.
16.
Effects of low electric current (LEC) treatment on pure bacterial cultures   总被引:1,自引:0,他引:1  
AIMS: This research focused on the effects of low electric current (LEC) on the cell viability and metabolic activity of Escherichia coli and Bacillus cereus. METHODS AND RESULTS: Different LEC intensities at fixed amperage were applied, employing either graphite or copper electrode pairs, and the effects were determined by conventional cultural methods and bioindicators. On E. coli, the LEC with graphite electrodes at 5 and 10 mA led to no significant variation, but at 20 and 40 mA there was increasing inhibition of both the enzymatic activities and growth, and a reduction in ATP content. On B. cereus, similar experiments at the lower amperages did not have any inhibitor effects, however, the 40 mA current stimulated growth, ATP content and some enzymatic activities. The LEC treatment using copper electrodes caused, already at 5 mA, inhibition of bacterial growth and metabolic and enzymatic activities in both E. coli and B. cereus. CONCLUSIONS: On the basis of the obtained results using different amperages and electrodes, we can conclude that E. coli seem to be more sensitive compared with B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: The study increases the knowledge on LEC treatment effects on the pure bacterial cultures.  相似文献   
17.
The heterodimerization of WT Cu, Zn superoxide dismutase-1 (SOD1), and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Rates and free energies of heterodimerization (ΔGHet) between WT and ALS-mutant SOD1 in mismatched metalation states—where one subunit is metalated and the other is not—have been difficult to obtain. Consequently, the hypothesis that under-metalated SOD1 might trigger misfolding of metalated SOD1 by “stealing” metal ions remains untested. This study used capillary zone electrophoresis and mass spectrometry to track heterodimerization and metal transfer between WT SOD1, ALS-variant SOD1 (E100K, E100G, D90A), and triply deamidated SOD1 (modeled with N26D/N131D/N139D substitutions). We determined that rates of subunit exchange between apo dimers and metalated dimers—expressed as time to reach 30% heterodimer—ranged from t30% = 67.75 ± 9.08 to 338.53 ± 26.95 min; free energies of heterodimerization ranged from ΔGHet = -1.21 ± 0.31 to -3.06 ± 0.12 kJ/mol. Rates and ΔGHet values of partially metalated heterodimers were more similar to those of fully metalated heterodimers than apo heterodimers, and largely independent of which subunit (mutant or WT) was metal-replete or metal-free. Mass spectrometry and capillary electrophoresis demonstrated that mutant or WT 4Zn-SOD1 could transfer up to two equivalents of Zn2+ to mutant or WT apo-SOD1 (at rates faster than the rate of heterodimerization). This result suggests that zinc-replete SOD1 can function as a chaperone to deliver Zn2+ to apo-SOD1, and that WT apo-SOD1 might increase the toxicity of mutant SOD1 by stealing its Zn2+.  相似文献   
18.
Serotonin is a major neurotransmitter that controls many functions, ranging from mood and behaviour through to sleep and motor functions. The non-enzymatic oxidation of serotonin is of significant importance as some oxidation products are considered to be neurotoxic. An interaction between copper and serotonin has been suggested by symptoms observed in a number of neurodegenerative diseases such as Wilson's and Prion diseases. Using PC12 cells as a model of neuronal cells, we show that the interaction between copper and serotonin is toxic to undifferentiated cells. The toxicity is largely due to reactive oxygen species as cell death is significantly reduced in the presence of the antioxidant mannitol. Differentiation of the PC12 cells also confers resistance to the oxidative process. In vitro oxidation of serotonin by copper results in the eventual formation of a coloured pigment, thought to be a melanin-like polymeric species. Using spectroscopic methods we provide evidence for the formation of a single intermediate product. This dimeric intermediate was identified and characterized as 5,5'-dihydroxy-4,4'-bitryptamine. These results indicate that copper structurally alters serotonin and this process may play a role in copper related neurodegenerative diseases.  相似文献   
19.
The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.  相似文献   
20.
Several decades back ascorbic acid was proposed as an effective anticancer agent. However, this idea remained controversial and the mechanism of action unclear. In this paper, we show that ascorbic acid at a concentration reported to be achievable through high doses of oral consumption is capable of cytotoxic action against normal cells. Several antioxidants of both animal as well as plant origin including ascorbic acid also possess prooxidant properties. Copper is an essential component of chromatin and can take part in redox reactions. Previously we have proposed a mechanism for the cytotoxic action of plant antioxidants against cancer cells that involves mobilization of endogenous copper ions and the consequent generation of reactive oxygen species. Using human peripheral lymphocytes and Comet assay we show here that ascorbic acid is able to cause oxidatative DNA breakage in normal cells at a concentration of 100–200 μM. Neocuproine, a Cu(I) specific sequestering agent inhibited DNA breakage in a dose dependent manner indicating that Cu(I) is an intermediate in the DNA cleavage reaction. The results are in support of our above hypothesis that involves events that lead to a prooxidant action by antioxidants. The results would support the idea that even a plasma concentration of around 200 μM would be sufficient to cause pharmacological tumor cell death particularly when copper levels are elevated. This would account for the observation of several decades back by Pauling and co-workers where oral doses of ascorbic acid in gram quantities were found to be effective in treating some cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号