首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   18篇
  国内免费   29篇
  315篇
  2023年   8篇
  2022年   3篇
  2021年   5篇
  2020年   13篇
  2019年   10篇
  2018年   7篇
  2017年   16篇
  2016年   12篇
  2015年   10篇
  2014年   15篇
  2013年   14篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   15篇
  2008年   14篇
  2007年   12篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
81.
Ectotherms in water experience rates of heat transfer at least two orders of magnitude greater than in air, seriously constraining their thermoregulatory capabilities. Yet, even in water, individuals may exert control over body temperature (Tb) via behaviors such as selecting thermally favorable microhabitats. The interactions among body size, physiology, and behavior on the thermal biology of large, entirely aquatic, ectotherms is poorly understood. We tested the hypothesis that alligator snapping turtles (Macroclemmys temminckii) selected microhabitats based on temperature by comparing temperatures at sites used by turtles to temperatures at randomly selected sites. These large turtles selected a narrow range of microhabitats that were significantly warmer and less variable in temperature than random sites. Cooling trials in the laboratory indicated larger turtles equilibrated more slowly to ambient temperature (Ta) than smaller turtles. We recorded Ta and body temperature (Tb) of turtles in the field continuously throughout the year. The Tb generally conformed to Ta but there were periods when TbTa differences were great. These results suggest that while physiology and size of aquatic turtles can affect Tb transiently, microhabitat selection may be the only meaningful mechanism for large, entirely aquatic, turtles to control Tb.  相似文献   
82.
We used infrared thermography to study respiratory cooling in the rattlesnakes (Viperidae: Crotalinae) and to partition the effects of air temperature, humidity, and activity levels on head-body temperature differences. We observed a single, cooled region centered around the mouth and nasal capsule that extended across the pit membrane at air temperatures above 20 degrees C. Both head and body temperatures of rattlesnakes increased linearly with air temperature. Head-body temperature differentials also increased with air temperature, but declined significantly at higher relative humidities. Rattling rattlesnakes exhibited significantly greater head-body temperature differentials than did resting rattlesnakes. We suggest that respiratory cooling may provide a thermal buffer for the thermoreceptive pit organs at high air temperatures, but caution that this adaptive hypothesis must be tested with direct neural or behavioral assays.  相似文献   
83.
84.
The latest Cretaceous (Campanian–Maastrichtian) is characterized by several global cooling and intermittent warming events. These climatic changes influenced the palaeoceanography substantially, including changes of the deep water sources and surface water currents. One of the most prominent episodes of climatic cooling occurred during the Campanian–Maastrichtian transition. This study focuses on the palaeoclimate and palaeoceanography of the Campanian–Maastrichtian transition by analysing the calcareous nannofossils of DSDP Hole 390A (139.92–126.15 mbsf; Blake Nose). For the examination of calcareous nannofossils sixty samples were processed using the settling technique. Biostratigraphical index taxa (Broinsonia parca constricta, Uniplanarius trifidus, and Tranolithus orionatus) suggest a late Campanian age for the major part of the studied section. The calcareous nannofossils are well preserved, highly abundant (6.80 billion specimens/gram sediment) and diverse (80 species/sample). The assemblages are dominated by Prediscosphaera spp. (20.5%), Watznaueria spp. (20.3%) and Retecapsa spp. (9.8%). Cool water taxa (Ahmuellerella octoradiata, Gartnerago segmentatum, and Kamptnerius magnificus), however, appear less frequently and do not exceed more than 1%. Due to their rarity these cool water taxa do not support the existence of an intense cooling phase during the Campanian–Maastrichtian transition at DSDP Hole 390A. Around 133 mbsf several nannofossil taxa, however, show a distinctive turnover. Mesotrophic species like Discorhabdus ignotus, Zeugrhabdotus bicrescenticus and Zygodiscus exmouthiensis are abundant below 133 mbsf, whereas oligotrophic taxa like Watznaueria spp., Eiffellithus spp. and Staurolithites flavus become common above this level. These changes imply a decrease in the input of nutrients, perhaps caused by a reorganization of ocean currents (Palaeo Gulf Stream) and reduced upwelling.  相似文献   
85.
Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs – hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well‐timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region‐wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build‐up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995–2010), the annual probability that cooling and thermal stress co‐occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation.  相似文献   
86.
Background The rate at which lethal intracellular ice formation occurs during cryopreservation is highly dependent on several variables. The objective of this study was to determine the optimal rate at which rhesus sperm can be cooled. Methods Experiments were performed using three rates of cooling. Sperm motility was evaluated by computer‐assisted semen analysis, and post‐thaw viability was determined using propidium iodide labeling and flow cytometry. Semen was frozen at three cooling rates: (i) fast, (ii) slow, and (iii) standard. Straws were thawed for 30 s at 37°C for analysis of motility and viability. Results Post‐thaw motility and viability were comparable between freezing curves. Sperm cryopreserved using the slow freeze curve exhibited lowest motility and viability. Conclusions This study indicates that macaque sperm survive cooling optimally when cooling rates range from ?17 to ?34°C/minute. Conversely, slow cooling was detrimental and resulted in poor quality sperm.  相似文献   
87.
From three boreholes (DSDP Site 535; ODP Site 638; BGS borehole 81/43) of the Central Atlantic and the North Sea Basin 379 samples of early Cretaceous age (Valanginian-Hauterivian) were examined. The localities cover a S-N transect of approximately 3000 km stretching from 17°N to 40°N palaeolatitude. The distribution of calcareous nannofossils and fluctuations of the stable isotopes (δ13C, δ18O) have been recorded and were compared with results of recent studies. We differentiate between high nutrient indicators and oligotrophic taxa and propose a four step scheme to characterize the trophic level of the surface water. (1) High abundances of the fertility group (Biscutum constans/Zeugrhabdotus spp.) combined with a high dominance of B. constans and low abundances of Watznaueria barnesae/W. fossacincta represent a high nutrient environment (eutrophic setting). (2) High abundances of the fertility group combined with a high dominance of Zeugrhabdotus spp. and low abundances of W. barnesae/W. fossacincta reflect enhanced nutrient contents of the surface water (mesotrophic setting). (3) Enhanced abundances of the fertility group combined with high abundances of W. barnesae/W. fossacincta indicate slightly increased nutrient contents of the surface water (meso- to oligotrophic setting). (4) Low abundances of the fertility group and high abundances of W. barnesae/W. fossacincta are of low nutrient affinities (oligotrophic setting). Our estimations of seawater palaeotemperatures in combination with literature data show a distinctive trend for the Valanginian to Hauterivian interval. A general decrease of water temperature from the Valanginian to the early Hauterivian is obvious. This decrease of temperature coincides with the southward migration of the high latitudinal cold water species Crucibiscutum salebrosum to lower latitudes. Our findings shed new light on the evolution of the earliest Cretaceous climate, which may be characterized as a warm greenhouse world with interludes of short cooling.  相似文献   
88.
To explore the evolution of climate through the Miocene, especially during the Middle Miocene climate transition, multiproxy continental records were analyzed by susceptibility (SUS), lightness (L), total inorganic carbon (TIC) and total organic carbon (TOC) content from the 2900-m-thick fluviolacustrine sediment sequence at Guyuan, Ningxia, China and compared with the redness (a) and the pollen humidity indices from the same section. The published Miocene records of sedimentation rate, sediment grain size, biota turnover, and palaeoproductivity from other regions were also compiled and compared. Results show that multiproxies of the Sikouzi section have changed substantially since 12–11 Ma ago. SUS, L and TIC have increased while a, TOC and the pollen humidity index decreased, all implying that the palaeoclimate in the study area has got cooler and drier since that time.This climate change also left imprints in many other regions, probably resulting from global cooling and the development of the East Antarctic Ice Sheet since about 14 Ma. Several positive feedback mechanisms are proposed to have effectively modulated and magnified the Mid-Miocene global cooling, including vegetation change, greenhouse gas (atmospheric CO2 and water vapor) fluctuations. They led to the strengthing of ocean and atmospheric circulation, significant lowering of sea level and increasing aridification over the globe, especially in middle-high latitudes. Since 12–11 Ma ago, a continuously cooler and drier climate may have caused the substantial intensification of physical weathering and exhumation on the earth's surface, the increased sediment accumulation rates on the land and in the sea, and the inception of productivity increase in the oceans. Nevertheless, when and where these mechanisms operated and how they were tied to each other remain ambiguous, deserving further investigation.  相似文献   
89.
Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me2SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me2SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine.  相似文献   
90.
Data from the Hill of Six Lakes, in the northwestern Brazilian Amazon region, provide three records of paleoclimatic and vegetation change in lowland Amazonia that span the last 170,000 years. Three lakes, Verde, Pata and Dragão, which occupy separate watersheds on the hill, provide the most detailed image yet obtained of ice-age conditions in lowland Amazonia. Well-dated sedimentary records for fossil palynological, charcoal, cation, and pigment, data are presented.The data indicate the continuous presence of mesic forest throughout the last ice age. Oscillations of lake level are recorded and the lowstands are attributed to reduced precipitation inputs to systems delicately balanced between water loss (leakage through the floor of the basin) and gain (precipitation). Gross stratigraphy, algal remains, and paleochemistry suggest that the stands of high and low lake level were cyclic, apparently correlating precessional orbital variation. Times of lake lowstand coincide with wet season (December-January-February, DJF) insolation minima. The strongest of eight lowstand cycles occurred ca. 35,000 to 27,000 cal BP.Even during lowstand episodes, pollen is well preserved and provides a clear signal of uninterrupted forest cover. The principal lowland elements are continuously present in the record, suggesting the long-term (Quaternary) availability of the lowland forest biome in this region. However, during the late Pleistocene the forest changed in composition with the expansion or invasion of montane floral elements creating communities of the mesic forest biome without modern analogs. While precipitation cycles were causing lake levels to rise and fall, the principal influence on vegetation appears to have been cooling. In the late Pleistocene, the population expansion of montane elements at lower elevations is consistent with a cooling of 4-5 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号