首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4795篇
  免费   33篇
  国内免费   8篇
  4836篇
  2024年   54篇
  2023年   354篇
  2022年   226篇
  2021年   271篇
  2020年   357篇
  2019年   448篇
  2018年   422篇
  2017年   303篇
  2016年   358篇
  2015年   199篇
  2014年   450篇
  2013年   909篇
  2012年   40篇
  2011年   39篇
  2010年   37篇
  2009年   12篇
  2008年   20篇
  2007年   19篇
  2006年   6篇
  2005年   50篇
  2004年   33篇
  2003年   24篇
  2002年   23篇
  2001年   7篇
  2000年   9篇
  1999年   8篇
  1998年   12篇
  1997年   9篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1986年   2篇
  1985年   13篇
  1984年   20篇
  1983年   22篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
排序方式: 共有4836条查询结果,搜索用时 15 毫秒
61.
Movement of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and lake sturgeon (A. fulvescens) in the St. Lawrence Estuary (Québec, Canada) are not fully understood. To assess the movement extent of both species, a mark–recapture study was conducted in collaboration with commercial fishermen operating in the St. Lawrence Estuary. Between 1981 and 2015, 3,367 Atlantic sturgeon (fork length 21.8–199.5 cm) and 3,180 lake sturgeon (fork length 17.8–190.8 cm) were tagged and released. Of these, 673 Atlantic sturgeon and 42 lake sturgeon were recaptured. The maximum distances traveled between capture and recapture locations were 1,307 km for Atlantic sturgeon (8 years after initial capture) and 252 km for lake sturgeon (less than 1 year after initial capture). Statistical analyses identified differences in the dispersal distance of both species as revealed by a first component characterized by individuals with short dispersal distances (98% and <35 km for Atlantic sturgeon; 58% and <1 km for lake sturgeon) and a second component characterized by individuals with longer dispersal distances (2% and >600 km for Atlantic sturgeon; 42% and >190 km for lake sturgeon). We suggest that the short dispersal distances detected in the vast majority of Atlantic sturgeon recaptures likely reflect strong site fidelity, highlighting the importance of the St. Lawrence Estuary as a preferred habitat for juveniles and subadults. Although recaptures were low for lake sturgeon because this species is only marginally targeted by commercial fishermen in the St. Lawrence Estuary, our results also showed that this species uses estuarine habitats and that half of the population seems to exhibit strong site fidelity (67% of individuals were recaptured within 2 km).  相似文献   
62.
63.
Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a ‘fuzzy complex’ that follows a ‘dynamic zipper’ mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.  相似文献   
64.
65.
66.
67.
Understanding predator–prey interactions and food web dynamics is important for ecosystem-based management in aquatic environments, as they experience increasing rates of human-induced changes, such as the addition and removal of fishes. To quantify the post-stocking survival and predation of a prey fish in Lake Ontario, 48 bloater Coregonus hoyi were tagged with acoustic telemetry predation tags and were tracked on an array of 105 acoustic receivers from November 2018 to June 2019. Putative predators of tagged bloater were identified by comparing movement patterns of six species of salmonids (i.e., predators) in Lake Ontario with the post-predated movements of bloater (i.e., prey) using a random forests algorithm, a type of supervised machine learning. A total of 25 bloater (53% of all detected) were consumed by predators on average (± S.D. ) 3.1 ± 2.1 days after release. Post-predation detections of predators occurred for an average (± S.D. ) of 78.9 ± 76.9 days, providing sufficient detection data to classify movement patterns. Tagged lake trout Salvelinus namaycush provided the most reliable classification from behavioural predictor variables (89% success rate) and was identified as the main consumer of bloater (consumed 50%). Movement networks between predicted and tagged lake trout were significantly correlated over a 6 month period, supporting the classification of lake trout as a common bloater predator. This study demonstrated the ability of supervised learning techniques to provide greater insight into the fate of stocked fishes and predator–prey dynamics, and this technique is widely applicable to inform future stocking and other management efforts.  相似文献   
68.
Environmental pollution is currently identified as one of the major drivers of rapid decline of insect populations, and this finding has revitalized interest in insect responses to pollution. We tested the hypothesis that the pollution-induced decline of insect populations can be predicted from phenotypic stress responses expressed as morphological differences between populations inhabiting polluted and unpolluted sites. We explored populations of the brassy tortrix Eulia ministrana in subarctic forests along an environmental disturbance gradient created by long-lasting severe impacts of aerial emissions of the copper–nickel smelter in Monchegorsk, northwestern Russia. We used pheromone traps to measure the population densities of this leafrolling moth and to collect specimens for assessment of three morphological stress indices: size, forewing melanization, and fluctuating asymmetry in wing venation. Wing length of E. ministrana increased by 10%, and neither forewing melanization nor fluctuating asymmetry changed from the unpolluted forest to the heavily polluted industrial barren. However, the population density of E. ministrana decreased 5 to 10 fold in the same pollution gradient. Thus, none of the studied potential morphological stress indicators signaled vulnerability of E. ministrana to environmental pollution and/or to pollution-induced environmental disturbance. We conclude that insect populations can decline without any visible signs of stress. The use of morphological proxies of insect fitness to predict the consequences of human impact on insect populations is therefore risky until causal relationships between these proxies and insect abundance are deciphered.  相似文献   
69.
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.  相似文献   
70.
Abstract

Protein–protein interactions play fundamental roles in most biological processes. Bimolecular fluorescence complementation (BiFC) is a promising method for its simplicity and direct visualization of protein–protein interactions in cells. This method, however, is limited by background fluorescence that appears without specific interaction between the proteins. We report here a point mutation (V150L) in one Venus BiFC fragment that efficiently decreases background fluorescence of BiFC assay. Furthermore, by combining this modified BiFC and linear expression cassette (LEC), we develop a simple and rapid method (LEC–BiFC) for protein interaction analysis that is demonstrated by a case study of the interaction between Bcl–XL and Bak BH3 peptide. The total analysis procedure can be completed in two days for screening tens of mutants. LEC–BiFC can be applied easily in any lab equipped with a fluorescence microscope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号