首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8132篇
  免费   959篇
  国内免费   604篇
  9695篇
  2024年   41篇
  2023年   226篇
  2022年   232篇
  2021年   281篇
  2020年   385篇
  2019年   444篇
  2018年   384篇
  2017年   371篇
  2016年   331篇
  2015年   343篇
  2014年   377篇
  2013年   592篇
  2012年   335篇
  2011年   312篇
  2010年   292篇
  2009年   444篇
  2008年   467篇
  2007年   456篇
  2006年   404篇
  2005年   368篇
  2004年   326篇
  2003年   286篇
  2002年   248篇
  2001年   279篇
  2000年   217篇
  1999年   222篇
  1998年   184篇
  1997年   145篇
  1996年   103篇
  1995年   95篇
  1994年   106篇
  1993年   53篇
  1992年   53篇
  1991年   43篇
  1990年   65篇
  1989年   16篇
  1988年   28篇
  1987年   23篇
  1986年   20篇
  1985年   18篇
  1984年   22篇
  1983年   14篇
  1982年   15篇
  1981年   8篇
  1980年   9篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1974年   1篇
排序方式: 共有9695条查询结果,搜索用时 15 毫秒
41.
Inter simple sequence repeat (ISSR) marker assay was employed to validate the genetic fidelity of Swertia chirayita plantlets multiplied in vitro by axillary multiplication upto forty-two passages. Sixteen ISSR primers generated a total of 102 amplicons among the tissue-cultured plants. Forty-eight amplicons were amplified in the outlier (a Swertia species). The outlier (negative control) was employed to rule out the possibility that the invariant fingerprint was due to chance alone and that the ISSR technique employed was not discriminatory enough to detect the off-types. A homogenous amplification profile was observed for all the micropropagated plants. The results confirmed the clonal fidelity of the tissue culture-raised S. chirayita plantlets and corroborated the fact that axillary multiplication is the safest mode for multiplication of true to type plants.  相似文献   
42.
Connexins had been considered to be the only class of the vertebrate proteins capable of gap junction formation; however, new candidates for this function with no homology to connexins, termed pannexins were discovered. So far three pannexins were described in rodent and human genomes: Panx1, Panx2 and Panx3. Expressions of pannexins can be detected in numerous brain structures, and now found both in neuronal and glial cells. Hypothetical roles of pannexins in the nervous system include participating in sensory processing, hippocampal plasticity, synchronization between hippocampus and cortex, and propagation of the calcium waves supported by glial cells, which help maintain and modulate neuronal metabolism. Pannexin also may participate in pathological reactions of the neural cells, including their damage after ischemia and subsequent cell death. Recent study revealed non-gap junction function of Panx1 hemichannels in erythrocytes, where they serve as the conduits for the ATP release in response to the osmotic stress. High-throughput studies produced some evidences of the pannexin involvement in the process of tumorigenesis. According to brain cancer gene expression database REMBRANDT, PANX2 expression levels can predict post diagnosis survival for patients with glial tumors. Further investigations are needed to verify or reject hypotheses listed.  相似文献   
43.
Abstract Ranunculus prasinus is a mat-forming species of the marginal herbfields and tussock grasslands of brackish wetlands. It is only known from four wetlands, all on private land, in the driest part of Tasmania. The species has been successfully introduced from divisions from three of the populations into a secure reserve with similar vegetation to that of the natural populations. This is considered to be desirable and morally sound in that it increases the chances of survival of native biological diversity as a whole. However, ex situ measures and a gaining of security for natural populations would also be prudent.  相似文献   
44.

Aim

Many important patterns and processes vary across the phylogeny and depend on phylogenetic scale. Nonetheless, phylogenetic scale has never been formally conceptualized, and its potential remains largely unexplored. Here, we formalize the concept of phylogenetic scale, review how phylogenetic scale has been considered across multiple fields and provide practical guidelines for the use of phylogenetic scale to address a range of biological questions.

Innovation

We summarize how phylogenetic scale has been treated in macroevolution, community ecology, biogeography and macroecology, illustrating how it can inform, and possibly resolve, some of the longstanding controversies in these fields. To promote the concept empirically, we define phylogenetic grain and extent, scale dependence, scaling and the domains of phylogenetic scale. We illustrate how existing phylogenetic data and statistical tools can be used to investigate the effects of scale on a variety of well‐known patterns and processes, including diversification rates, community structure, niche conservatism or species‐abundance distributions.

Main conclusions

Explicit consideration of phylogenetic scale can provide new and more complete insight into many longstanding questions across multiple fields (macroevolution, community ecology, biogeography and macroecology). Building on the existing resources and isolated efforts across fields, future research centred on phylogenetic scale might enrich our understanding of the processes that together, but over different scales, shape the diversity of life.  相似文献   
45.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   
46.
Introduced exotic species cause environmental changes and threat public health in target sites. Illegal trade has enhanced this problem. To first report these risks in Brazil, exotic snakes found in São Paulo City (SPC) (23°32 S, 46°38 W), southeastern Brazil, and sent to Instituto Butantan between 1995 and 2000, were listed and characterized by their biological attributes. Seventy-six individuals of sixteen alien species were collected. Euriecians snakes, mainly booids, were predominant. Using multivariate techniques, their ecological niches were compared to those of 26 native species, as a way to point out the resource's availability. To evaluate the potential of successful implantation, two species absent in SPC and considered as problem snakes are included in these analyses: the brown treesnake Boiga irregularis and the habu Trimeresurus flavoviridis. There were niche similarities between these pest snakes, exotic booids and native viperids largely due to the similarities in the chosen prey (mammals), diel activity (nocturnal), color pattern (variegated) and body size (medium to large). To avoid predictable undesirable effects of implanted pest snakes, traffic control and punishment should be improved, as well as parallel environmental education programs.  相似文献   
47.
48.
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal‐limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another.  相似文献   
49.
Reintroductions are commonly employed to preserve intraspecific biodiversity in fragmented landscapes. However, reintroduced populations are frequently smaller and more geographically isolated than native populations. Mixing genetically, divergent sources are often proposed to attenuate potentially low genetic diversity in reintroduced populations that may result from small effective population sizes. However, a possible negative tradeoff for mixing sources is outbreeding depression in hybrid offspring. We examined the consequences of mixed‐source reintroductions on several fitness surrogates at nine slimy sculpin (Cottus cognatus) reintroduction sites in south‐east Minnesota. We inferred the relative fitness of each crosstype in the reintroduced populations by comparing their growth rate, length, weight, body condition and persistence in reintroduced populations. Pure strain descendents from a single source population persisted in a greater proportion than expected in the reintroduced populations, whereas all other crosstypes occurred in a lesser proportion. Length, weight and growth rate were lower for second‐generation intra‐population hybrid descendents than for pure strain and first‐generation hybrids. In the predominant pure strain, young‐of the‐year size was significantly greater than any other crosstype. Our results suggested that differences in fitness surrogates among crosstypes were consistent with disrupted co‐adapted gene complexes associated with beneficial adaptations in these reintroduced populations. Future reintroductions may be improved by evaluating the potential for local adaptation in source populations or by avoiding the use of mixed sources by default when information on local adaptations or other genetic characteristics is lacking.  相似文献   
50.
One of the greatest challenges for biodiversity conservation is the poor understanding of species diversity. Molecular methods have dramatically improved our ability to uncover cryptic species, but the magnitude of cryptic diversity remains unknown, particularly in diverse tropical regions such as the Amazon Basin. Uncovering cryptic diversity in amphibians is particularly pressing because amphibians are going extinct globally at an alarming rate. Here, we use an integrative analysis of two independent Amazonian frog clades, Engystomops toadlets and Hypsiboas treefrogs, to test whether species richness is underestimated and, if so, by how much. We sampled intensively in six countries with a focus in Ecuador (Engystomops: 252 individuals from 36 localities; Hypsiboas: 208 individuals from 65 localities) and combined mitochondrial DNA, nuclear DNA, morphological, and bioacoustic data to detect cryptic species. We found that in both clades, species richness was severely underestimated, with more undescribed species than described species. In Engystomops, the two currently recognized species are actually five to seven species (a 150-250% increase in species richness); in Hypsiboas, two recognized species represent six to nine species (a 200-350% increase). Our results suggest that Amazonian frog biodiversity is much more severely underestimated than previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号