首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5606篇
  免费   55篇
  国内免费   40篇
  2024年   54篇
  2023年   362篇
  2022年   232篇
  2021年   285篇
  2020年   374篇
  2019年   473篇
  2018年   441篇
  2017年   309篇
  2016年   372篇
  2015年   207篇
  2014年   491篇
  2013年   961篇
  2012年   71篇
  2011年   68篇
  2010年   60篇
  2009年   41篇
  2008年   58篇
  2007年   63篇
  2006年   32篇
  2005年   66篇
  2004年   61篇
  2003年   68篇
  2002年   51篇
  2001年   45篇
  2000年   33篇
  1999年   41篇
  1998年   42篇
  1997年   35篇
  1996年   22篇
  1995年   18篇
  1994年   21篇
  1993年   21篇
  1992年   16篇
  1991年   9篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1985年   23篇
  1984年   31篇
  1983年   30篇
  1982年   14篇
  1981年   13篇
  1980年   15篇
  1979年   13篇
  1978年   9篇
  1977年   11篇
  1976年   5篇
  1975年   6篇
  1974年   7篇
  1973年   3篇
排序方式: 共有5701条查询结果,搜索用时 31 毫秒
981.
以直播稻为对象,在上海农场进行了猪场处理废水基肥和穗肥不同用量组合的田间试验,研究猪场废水对水稻磷养分吸收利用与氮磷生态化学计量的影响。结果表明:施用猪场处理废水对直播水稻干物质积累、植株磷含量有显著影响。水稻拔节期、齐穗期和成熟期干物质积累量以及产量随废水施用量增加而增加;拔节期、齐穗期和成熟期植株、秸秆及籽粒含磷量与废水用量皆呈显著正相关;不同施肥处理在整个生育期水稻植株N∶P为3.13~5.10,在拔节期、齐穗期、成熟期分别为3.13~4.83、3.42~4.35、3.98~5.10,总体上以齐穗期N∶P值较低;成熟期秸秆N∶P值变动较大(4.30~6.57),而籽粒变化较小(3.85~4.37);齐穗期植株、成熟期秸秆、籽粒和植株的N∶P值与废水施用总量皆呈显著正相关,表明废水施用对直播稻氮素吸收的促进作用大于磷素。  相似文献   
982.
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position, as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.  相似文献   
983.
The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified (“dark peptidome”) by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC.  相似文献   
984.
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.  相似文献   
985.
The filamentous cyanobacterium Anabaena sp. PCC 7120 can differentiate into heterocysts to fix atmospheric nitrogen. During cell differentiation, cellular morphology and gene expression undergo a series of significant changes. To uncover the mechanisms responsible for these alterations, we built protein–protein interaction (PPI) networks for these two cell types by cofractionation coupled with mass spectrometry. We predicted 280 and 215 protein complexes, with 6322 and 2791 high-confidence PPIs in vegetative cells and heterocysts, respectively. Most of the proteins in both types of cells presented similar elution profiles, whereas the elution peaks of 438 proteins showed significant changes. We observed that some well-known complexes recruited new members in heterocysts, such as ribosomes, diflavin flavoprotein, and cytochrome c oxidase. Photosynthetic complexes, including photosystem I, photosystem II, and phycobilisome, remained in both vegetative cells and heterocysts for electron transfer and energy generation. Besides that, PPI data also reveal new functions of proteins. For example, the hypothetical protein Alr4359 was found to interact with FraH and Alr4119 in heterocysts and was located on heterocyst poles, thereby influencing the diazotrophic growth of filaments. The overexpression of Alr4359 suspended heterocyst formation and altered the pigment composition and filament length. This work demonstrates the differences in protein assemblies and provides insight into physiological regulation during cell differentiation.  相似文献   
986.
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples.  相似文献   
987.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
988.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
989.
裸子植物雄球花——纤细堆囊穗的修订   总被引:4,自引:0,他引:4  
研究了采自中国东北晚三叠世羊草沟组的一种裸子植物雄球花——纤细堆囊穗。通过对新材料的研究,发现这种雄球花小孢子叶末端的裂片在形态上差异很大,这是原来没有发现的十分重要的特征。这些保存精美的化石对于纤细堆囊穗特征的阐明和修订以及物种复原很有帮助。将中国的标本与西伯利亚堆囊穗、小堆囊穗、乌尔马堆囊穗和被定为长叶拜拉的雄球花进行了比较,发现它们与纤细堆囊穗在特征上一致,故将它们处理为纤细堆囊穗的异名。修订后的纤细堆囊穗包括上面所提到的所有种。同时,也讨论了堆囊穗属可能的演化意义。它可能是银杏属的远祖,经过小孢子囊数目的减少和小孢子叶长度的缩短而演化到现在的银杏,而产自辽西早白垩世的辽宁银杏可能代表了堆囊穗和现代银杏在形态演化上的一个中间步骤。  相似文献   
990.
Phytoremediation is a promising approach for the cleanup of soil contaminated with petroleum hydrocarbons. This study aimed to develop plant-bacterial synergism for the successful remediation of crude oil-contaminated soil. A consortia of three endophytic bacteria was augmented to two grasses, Leptochloa fusca and Brachiaria mutica, grown in oil-contaminated soil (46.8 g oil kg?1 soil) in the vicinity of an oil exploration and production company. Endophytes augmentation improved plant growth, crude oil degradation, and soil health. Maximum oil degradation (80%) was achieved with B. mutica plants augmented with the endophytes and it was significantly (P < 0.05) higher than the use of plants or bacteria individually. Moreover, endophytes showed more persistence, the abundance and expression of alkB gene in the rhizosphere as well as in the endosphere of the tested plants than in unvegetated soil. A positive relationship (r = 0.70) observed between gene expression and crude oil reduction indicates that catabolic gene expression is important for hydrocarbon mineralization. This investigation showed that the use of endophytes with appropriate plant is an effective strategy for the cleanup of oil-contaminated soil under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号