首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   105篇
  国内免费   36篇
  1173篇
  2024年   4篇
  2023年   40篇
  2022年   51篇
  2021年   65篇
  2020年   55篇
  2019年   66篇
  2018年   47篇
  2017年   58篇
  2016年   53篇
  2015年   59篇
  2014年   73篇
  2013年   122篇
  2012年   45篇
  2011年   41篇
  2010年   36篇
  2009年   37篇
  2008年   28篇
  2007年   43篇
  2006年   37篇
  2005年   29篇
  2004年   36篇
  2003年   28篇
  2002年   28篇
  2001年   18篇
  2000年   8篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
排序方式: 共有1173条查询结果,搜索用时 0 毫秒
81.
Pletnev VZ  Weeks CM  Duax WL 《Proteins》2004,57(2):294-301
The dominant role of long-range electrostatic interatomic interactions in nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD/NADP) cofactor recognition has been shown for enzymes of the short-chain oxidoreductase (SCOR) family. An estimation of cofactor preference based only on the contribution of the electrostatic energy term to the total energy of enzyme-cofactor interaction has been tested for approximately 40 known three-dimensional (3D) crystal complexes and approximately 330 SCOR enzymes, with cofactor preference predicted by the presence of Asp or Arg recognition residues at specific 3D positions in the beta2alpha3 loop (Duax et al., Proteins 2003;53:931-943). The results obtained were found to be consistent with approximately 90% reliable cofactor assignments for those subsets. The procedure was then applied to approximately 170 SCOR enzymes with completely uncertain NAD/NADP dependence, due to the lack of Asp and Arg marker residues. The proposed 3D electrostatic approach for cofactor assignment ("3D_DeltaE(el)") has been implemented in an automatic screening procedure, and together with the use of marker residues proposed earlier (Duax et al., Proteins 2003;53:931-943), increases the level of reliable predictions for the putative SCORs from approximately 70% to approximately 90%. It is expected to be applicable for any NAD/NADP-dependent enzyme subset having at least 25-30% sequence identity, with at least one enzyme of known 3D crystal structure.  相似文献   
82.
Natural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient-rich oxygenated blood through the vasculature to support cell metabolism within most cell-dense tissues. Since scaffold-free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue-like structures, we generated a generalizable biofabrication method resulting in self-supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO-A5 osteoblast-based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.  相似文献   
83.
The aortic valve (AV) achieves unidirectional blood flow between the left ventricle and the aorta. Although hemodynamic stresses have been shown to regulate valvular biology, the native wall shear stress (WSS) experienced by AV leaflets remains largely unknown. The objective of this study was to quantify computationally the macro-scale leaflet WSS environment using fluid–structure interaction modeling. An arbitrary Lagrangian–Eulerian approach was implemented to predict valvular flow and leaflet dynamics in a three-dimensional AV geometry subjected to physiologic transvalvular pressure. Local WSS characteristics were quantified in terms of temporal shear magnitude (TSM), oscillatory shear index (OSI) and temporal shear gradient (TSG). The dominant radial WSS predicted on the leaflets exhibited high amplitude and unidirectionality on the ventricularis (TSM>7.50 dyn/cm2, OSI < 0.17, TSG>325.54 dyn/cm2 s) but low amplitude and bidirectionality on the fibrosa (TSM < 2.73 dyn/cm2, OSI>0.38, TSG < 191.17 dyn/cm2 s). The radial WSS component computed in the leaflet base, belly and tip demonstrated strong regional variability (ventricularis TSM: 7.50–22.32 dyn/cm2, fibrosa TSM: 1.26–2.73 dyn/cm2). While the circumferential WSS exhibited similar spatially dependent magnitude (ventricularis TSM: 1.41–3.40 dyn/cm2, fibrosa TSM: 0.42–0.76 dyn/cm2) and side-specific amplitude (ventricularis TSG: 101.73–184.43 dyn/cm2 s, fibrosa TSG: 41.92–54.10 dyn/cm2 s), its temporal variations were consistently bidirectional (OSI>0.25). This study provides new insights into the role played by leaflet–blood flow interactions in valvular function and critical hemodynamic stress data for the assessment of the hemodynamic theory of AV disease.  相似文献   
84.
85.
86.
87.
88.
89.
Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号