首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   102篇
  国内免费   36篇
  1173篇
  2024年   4篇
  2023年   40篇
  2022年   51篇
  2021年   65篇
  2020年   55篇
  2019年   66篇
  2018年   47篇
  2017年   58篇
  2016年   53篇
  2015年   59篇
  2014年   73篇
  2013年   122篇
  2012年   45篇
  2011年   41篇
  2010年   36篇
  2009年   37篇
  2008年   28篇
  2007年   43篇
  2006年   37篇
  2005年   29篇
  2004年   36篇
  2003年   28篇
  2002年   28篇
  2001年   18篇
  2000年   8篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
排序方式: 共有1173条查询结果,搜索用时 9 毫秒
41.
42.
《Autophagy》2013,9(1):74-92
Macroautophagy (autophagy) is a cellular recycling program essential for homeostasis and survival during cytotoxic stress. This process, which has an emerging role in disease etiology and treatment, is executed in four stages through the coordinated action of more than 30 proteins. An effective strategy for studying complicated cellular processes, such as autophagy, involves the construction and analysis of mathematical or computational models. When developed and refined from experimental knowledge, these models can be used to interrogate signaling pathways, formulate novel hypotheses about systems, and make predictions about cell signaling changes induced by specific interventions. Here, we present the development of a computational model describing autophagic vesicle dynamics in a mammalian system. We used time-resolved, live-cell microscopy to measure the synthesis and turnover of autophagic vesicles in single cells. The stochastically simulated model was consistent with data acquired during conditions of both basal and chemically-induced autophagy. The model was tested by genetic modulation of autophagic machinery and found to accurately predict vesicle dynamics observed experimentally. Furthermore, the model generated an unforeseen prediction about vesicle size that is consistent with both published findings and our experimental observations. Taken together, this model is accurate and useful and can serve as the foundation for future efforts aimed at quantitative characterization of autophagy.  相似文献   
43.
Reconstructing the function and behaviour of extinct groups of echinoderms is problematic because there are no modern analogues for their aberrant body plans. Cinctans, an enigmatic group of Cambrian echinoderms, exemplify this problem: their asymmetrical body plan differentiates them from all living species. Here, we used computational fluid dynamics to analyse the functional performance of cinctans without assuming an extant comparative model. Three-dimensional models of six species from across cinctan phylogeny were used in computer simulations of water flow. The results demonstrate that cinctans with strongly flattened bodies produced much less drag than species characterized by dorsal protuberances or swellings, suggesting the former were more stable on the seafloor. However, unlike the flattened forms, cinctans with high-relief bodies were able to passively direct flow towards the mouth and associated food grooves, indicating that they were capable of more efficient feeding on particles suspended in the water. This study provides evidence of a previously unknown evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms.  相似文献   
44.
Drag force acting on swimming marine mammals is difficult to measure directly. Researchers often use simple modeling and kinematic measurements from animals, or computational fluid dynamics (CFD) simulations to estimate drag. However, studies that compare these methods are lacking. Here, computational simulation and physical experiments were used to estimate drag forces on gliding bottlenose dolphins (Tursiops truncatus). To facilitate comparison, variable drag loading (no-tag, tag, tag + 4, tag + 8) was used to increase force in both simulations and experiments. During the experiments, two dolphins were trained to perform controlled glides with variable loading. CFD simulations of dolphin/tag geometry in steady flow (1–6 m/s) were used to model drag forces. We expect both techniques will capture relative changes created by experimental conditions, but absolute forces predicted by the methods will differ. CFD estimates were within a calculated 90% confidence interval of the experimental results for all but the tag condition. Relative drag increase predicted by the simulation vs. experiment, respectively, differed by between 21% and 31%: tag, 4% vs. 33%; tag + 4, 47% vs. 68%; and tag + 8, 108% vs. 77%. The results from this work provide a direct comparison of computational and experimental estimates of drag, and provide a framework to quantify uncertainty.  相似文献   
45.
Natural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient-rich oxygenated blood through the vasculature to support cell metabolism within most cell-dense tissues. Since scaffold-free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue-like structures, we generated a generalizable biofabrication method resulting in self-supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO-A5 osteoblast-based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.  相似文献   
46.
47.
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.  相似文献   
48.
Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large‐scale analysis to systematically predict and characterize proteins that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug–target relations to identify overrepresented protein–side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause side effects. Of 1428 side effects studied, 732 were predicted to be predominantly caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7 receptor (HTR7) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations.  相似文献   
49.
Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems. Among the existing modeling formalisms, the individual‐based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities, or populations due to individual variability. In addition, being a bottom‐up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course, no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in‐silico experimental setup. In this article, we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.  相似文献   
50.
Within the last decade, fully disposable centrifuge technologies, fluidized‐bed centrifuges (FBC), have been introduced to the biologics industry. The FBC has found a niche in cell therapy where it is used to collect, concentrate, and then wash mammalian cell product while continuously discarding centrate. The goal of this research was to determine optimum FBC conditions for recovery of live cells, and to develop a mathematical model that can assist with process scaleup. Cell losses can occur during bed formation via flow channels within the bed. Experimental results with the kSep400 centrifuge indicate that, for a given volume processed: the bed height (a bed compactness indicator) is affected by RPM and flowrate, and dead cells are selectively removed during operation. To explain these results, two modeling approaches were used: (i) equating the centrifugal and inertial forces on the cells (i.e., a force balance model or FBM) and (ii) a two‐phase computational fluid dynamics (CFD) model to predict liquid flow patterns and cell retention in the bowl. Both models predicted bed height vs. time reasonably well, though the CFD model proved more accurate. The flow patterns predicted by CFD indicate a Coriolis‐driven flow that enhances uniformity of cells in the bed and may lead to cell losses in the outflow over time. The CFD‐predicted loss of viable cells and selective removal of the dead cells generally agreed with experimental trends, but did over‐predict dead cell loss by up to 3‐fold for some of the conditions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1520–1530, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号