首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   97篇
  国内免费   8篇
  1067篇
  2024年   3篇
  2023年   10篇
  2022年   7篇
  2021年   16篇
  2020年   39篇
  2019年   26篇
  2018年   21篇
  2017年   35篇
  2016年   39篇
  2015年   55篇
  2014年   55篇
  2013年   52篇
  2012年   45篇
  2011年   58篇
  2010年   65篇
  2009年   53篇
  2008年   60篇
  2007年   49篇
  2006年   36篇
  2005年   31篇
  2004年   26篇
  2003年   30篇
  2002年   22篇
  2001年   21篇
  2000年   17篇
  1999年   20篇
  1998年   23篇
  1997年   8篇
  1996年   15篇
  1995年   13篇
  1994年   9篇
  1993年   6篇
  1992年   13篇
  1991年   6篇
  1990年   11篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1067条查询结果,搜索用时 15 毫秒
951.
The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow‐ and purple‐flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I. lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency‐dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I. lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.  相似文献   
952.
953.
Gradients of variation—or clines—have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by‐product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.  相似文献   
954.
M-H Li  T Tiirikka  J Kantanen 《Heredity》2014,112(2):122-131
In sheep, coat colour (and pattern) is one of the important traits of great biological, economic and social importance. However, the genetics of sheep coat colour has not yet been fully clarified. We conducted a genome-wide association study of sheep coat colours by genotyping 47 303 single-nucleotide polymorphisms (SNPs) in the Finnsheep population in Finland. We identified 35 SNPs associated with all the coat colours studied, which cover genomic regions encompassing three known pigmentation genes (TYRP1, ASIP and MITF) in sheep. Eighteen of these associations were confirmed in further tests between white versus non-white individuals, but none of the 35 associations were significant in the analysis of only non-white colours. Across the tests, the s66432.1 in ASIP showed significant association (P=4.2 × 10−11 for all the colours; P=2.3 × 10−11 for white versus non-white colours) with the variation in coat colours and strong linkage disequilibrium with other significant variants surrounding the ASIP gene. The signals detected around the ASIP gene were explained by differences in white versus non-white alleles. Further, a genome scan for selection for white coat pigmentation identified a strong and striking selection signal spanning ASIP. Our study identified the main candidate gene for the coat colour variation between white and non-white as ASIP, an autosomal gene that has been directly implicated in the pathway regulating melanogenesis. Together with ASIP, the two other newly identified genes (TYRP1 and MITF) in the Finnsheep, bordering associated SNPs, represent a new resource for enriching sheep coat-colour genetics and breeding.  相似文献   
955.
Mass flowering is a widespread blooming strategy among Neotropical trees that has been frequently suggested to increase geitonogamous pollination. We investigated the pollination ecology of the mass‐flowering tree Handroanthus impetiginosus, addressing its breeding system, the role in pollination of different visitors, the impact of nectar robbers on fruit set and the function of colour changes in nectar guides. This xenogamous species is mainly pollinated by Centris and Euglossa bees (Apidae) seeking nectar, which are known to fly long distances. The flowers favour these bees by having: (1) a closed entrance in newly opened flowers which provides access only to strong bees capable of deforming the flower tube; and (2) a nectar chamber that is accessible only to long‐tongued bees. Only first‐day flowers with yellow nectar guides produce nectar. Pollinators prefer these flowers over second‐ and third‐day flowers with orange and red nectar guides, respectively. Nectar robbers damage two‐thirds of the flowers and this robbing activity decreases fruit set by half. We attribute the low fruit set of H. impetiginosus to the intense nectar robbing and hypothesize that visual signalling of nectar presence in newly opened (receptive) flowers reduces geitonogamy by minimizing bee visits to unrewarding (non‐receptive) flowers. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 396–407.  相似文献   
956.

1. 1.|The raccoon dogs frequently basked in spring while keeping their dark chest area towards the sun. The importance of this behaviour for the thermal balance was examined by using a cylinder model, and the results were compared with that of the blue fox which has pale chest and no basking behaviour.

2. 2.|With no external radiation source, cooling rates of blue fox and racoon dog models were almost equal, while in the sunshine with the chest area towards the sun, raccoon dog gained and blue fox lost heat.

3. 3.|In the same sunshine, the raccoon dog lost heat if its back area was towards the sun in comparison with the situation when the chest area was towards the sun.

4. 4.|Temperatures at the skin level were much higher for sun-exposed raccoon dogs than blue foxes especially on the chest area.

5. 5.|It is concluded that the hair coat structure of the raccoon dog is especially favourable for trapping heat from the sun, and with postural adjustments the animal takes maximal advantage of this free heat.

Author Keywords: Raccoon dog; coat colour; basking behaviour; blue fox; thermal radiation  相似文献   

957.
Conflicts of interests between males and females over reproduction is a universal feature of sexually reproducing organisms and has driven the evolution of intersexual mimicry, mating behaviours and reproductive polymorphisms. Here, we show how temperature drives pre‐reproductive selection in a female colour polymorphic insect that is subject to strong sexual conflict. These species have three female colour morphs, one of which is a male mimic. This polymorphism is maintained by frequency‐dependent sexual conflict caused by male mating harassment. The frequency of female morphs varies geographically, with higher frequency of the male mimic at higher latitudes. We show that differential temperature sensitivity of the female morphs and faster sexual maturation of the male mimic increases the frequency of this morph in the north. These results suggest that sexual conflict during the adult stage is shaped by abiotic factors and frequency‐independent pre‐reproductive selection that operate earlier during ontogeny of these female morphs.  相似文献   
958.
959.
The majority of Euglyphida species are characterised by shells with imbricated silica scales. Environmental surveys indicate a large unexplored diversity and recent efforts hinted at a certain diversity of yet undescribed, inconspicuous, scale-lacking Euglyphida. Here we describe Phaeobola aeris gen. nov., sp. nov. that shows a variety of morphological characters typical for the Euglyphida but lacks silica scales-instead, this species bears an agglutinated test. Neither its morphology nor phylogenetic placement allows its assignment to any currently described family. We erected the yet monospecific genus Phaeobola gen. nov., which with yet available data remain Euglyphida incertae sedis.  相似文献   
960.
Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Kr?kopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号