首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1059篇
  免费   124篇
  国内免费   48篇
  2024年   7篇
  2023年   54篇
  2022年   48篇
  2021年   96篇
  2020年   96篇
  2019年   174篇
  2018年   88篇
  2017年   44篇
  2016年   31篇
  2015年   38篇
  2014年   68篇
  2013年   90篇
  2012年   42篇
  2011年   41篇
  2010年   31篇
  2009年   37篇
  2008年   36篇
  2007年   25篇
  2006年   25篇
  2005年   20篇
  2004年   11篇
  2003年   12篇
  2002年   12篇
  2001年   16篇
  2000年   12篇
  1999年   5篇
  1998年   7篇
  1997年   11篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1988年   3篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有1231条查询结果,搜索用时 422 毫秒
41.
《Autophagy》2013,9(8):1454-1465
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   
42.
43.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
44.
Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1 mM sulindac over 16 h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433–451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1 mM sulindac treatment for 8 h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30 K, 3 K and 1 K). Proteins isolated in the > 30 K and 3–30 K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1–3 K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS–MS. Collectively, our data show that LIM1215 cells treated with 1 mM sulindac for 8 h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5 AC, 6, and 13). A salient finding of this study was the increased proteolysis of cell surface proteins following treatment with sulindac for 8 h (40% higher than from untreated LIM1215 cells); several of these endogenous peptides contained C-terminal amino acids from transmembrane domains indicative of regulated intramembrane proteolysis (RIP). Taken together these results indicate that during the early-stage onset of sulindac-induced apoptosis (evidenced by increased annexin V binding, dephosphorylation of focal adhesion kinase (FAK), and cleavage of caspase-3), 1 mM sulindac treatment of LIM1215 cells results in decreased expression of secreted proteins implicated in ECM remodeling, mucosal maintenance and cell–cell-adhesion. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   
45.
The secretopeptidome comprises endogenous peptides derived from proteins secreted into the tumour microenvironment through classical and non-classical secretion. This study characterised the low-Mr (< 3 kDa) component of the human colon tumour (LIM1215, LIM1863) secretopeptidome, as a first step towards gaining insights into extracellular proteolytic cleavage events in the tumour microenvironment. Based on two biological replicates, this secretopeptidome isolation strategy utilised differential centrifugal ultrafiltration in combination with analytical RP-HPLC and nanoLC-MS/MS. Secreted peptides were identified using a combination of Mascot and post-processing analyses including MSPro re-scoring, extended feature sets and Percolator, resulting in 474 protein identifications from 1228 peptides (≤ 1% q-value, ≤ 5% PEP) — a 36% increase in peptide identifications when compared with conventional Mascot (homology ionscore thresholding). In both colon tumour models, 122 identified peptides were derived from 41 cell surface protein ectodomains, 23 peptides (12 proteins) from regulated intramembrane proteolysis (RIP), and 12 peptides (9 proteins) generated from intracellular domain proteolysis. Further analyses using the protease/substrate database MEROPS, (http://merops.sanger.ac.uk/), revealed 335 (71%) proteins classified as originating from classical/non-classical secretion, or the cell membrane. Of these, peptides were identified from 42 substrates in MEROPS with defined protease cleavage sites, while peptides generated from a further 205 substrates were fragmented by hitherto unknown proteases. A salient finding was the identification of peptides from 88 classical/non-classical secreted substrates in MEROPS, implicated in tumour progression and angiogenesis (FGFBP1, PLXDC2), cell–cell recognition and signalling (DDR1, GPA33), and tumour invasiveness and metastasis (MACC1, SMAGP); the nature of the proteases responsible for these proteolytic events is unknown. To confirm reproducibility of peptide fragment abundance in this study, we report the identification of a specific cleaved peptide fragment in the secretopeptidome from the colon-specific GPA33 antigen in 4/14 human CRC models. This improved secretopeptidome isolation and characterisation strategy has extended our understanding of endogenous peptides generated through proteolysis of classical/non-classical secreted proteins, extracellular proteolytic processing of cell surface membrane proteins, and peptides generated through RIP. The novel peptide cleavage site information in this study provides a useful first step in detailing proteolytic cleavage associated with tumourigenesis and the extracellular environment. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   
46.
Hematopoietic neoplasia other than lymphoma and leukemia is uncommon among non-human primates. Herein, we provide the first evidence of occurrence of leukemic histiocytic sarcoma in a captive common squirrel monkey with Saimiriine Gammaherpesvirus 2 (Rhadinovirus), Saimiri sciureus lymphocryptovirus 2 (Lymphocryptovirus), and Squirrel monkey retrovirus (β-Retrovirus) coinfection.  相似文献   
47.
This investigation was intended to elucidate whether long noncoding RNA (lncRNA)-activated by transforming growth factor-β (ATB) interacting with miR-200c could mediate colorectal cancer (CRC) progression, offering potential strategies for diagnosing and treating CRC. Here totally 315 patients with CRC were recruited, and their CRC tissues and adjacent normal tissues were gathered. Concurrently, four colon cancer cell lines (ie, SW620, Lovo, HCT116, and SW480) and the human colon mucosal epithelial cell line (NCM460) were also purchased. Moreover, si-ATB, si-NC, miR-200c mimic, miR-200c inhibitor, and miR-NC were prepared for transfection into the CRC cells, and their effects on CRC cell lines were evaluated based on the conduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and flow cytometry assay. Eventually, the Luciferase reporter gene assay was carried out to judge if there existed a targeted relationship between ATB and miR-200c. The results of Cox regression analyses suggested that overexpressed lncRNA ATB, underexpressed miR-200c, poor tumor differentiation, lymph-vascular invasion, and perineural invasion were symbolic of shortened survival of the patients with CRC (all P < .05). Besides, transfection of pcDNA3.1-ATB and miR-200c inhibitor could boost the viability and proliferation of Lovo and SW620 cell lines (all P < .05). Meanwhile, the expressions of p53 and p21 were also reduced under treatments of pcDNA3.1-ATB and miR-200c inhibitor (P < .05). In addition, CDK2 seemed to reverse the contribution of miR-200c to intensifying viability and proliferation of Lovo and SW420 cell lines (P < .05). Furthermore, ATB might downregulate miR-200c expression by targeting it (P < .05), and CDK2 was subjected to dual regulation of both ATB and miR-200c (P < .05). In conclusion, the lncRNA ATB/miR-200c/CDK2 signaling was responsible for intensified proliferation and prohibited apoptosis of CRC cells, which might provide effective approaches for diagnosing and treating CRC.  相似文献   
48.
49.
Long noncoding RNAs (lncRNAs) are found to be aberrantly expressed and pose significant impacts in colorectal cancer (CRC), the most prevalent type malignancy in the gastrointestinal tract. This study aimed to find out the regulation of lncRNA EIF3J antisense RNA 1 (EIF3J-AS1) on CRC progression. Expressions of EIF3J-AS1, microRNA-3163 (miR-3163), and Yes-associated protein 1 (YAP1) in tissues and cells were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Association of EIF3J-AS1 with CRC prognosis was analyzed through the online bioinformatics tool GEPIA. The biological function of EIF3J-AS1 in CRC was investigated by Cell Counting Kit-8, colony formation, caspase-3 activity, and TUNEL staining. Competitive endogenous RNA (ceRNA) network of EIF3J-AS1/miR-3163/YAP1 was determined by luciferase reporter and RNA immunoprecipitation assays. Results showed that EIF3J-AS1 was upregulated in CRC tissues and cell lines, indicating poor prognosis of CRC patients. The silence of EIF3J-AS1 led to reduced proliferation and facilitated apoptosis of CRC cells. Mechanistcally, EIF3J-AS1 was upregulated by cAMP-response element-binding protein-binding protein-mediated histone H3 on lysine 27 acetylation (H3K27ac) at the promoter region, and EIF3J-AS1 upregulated YAP1 expression through sponging miR-3163 in CRC cells. In conclusion, we first found that H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through the miR-3163/YAP1 axis, which might potentially provide a novel molecular-targeted strategy for CRC treatment.  相似文献   
50.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号