首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   109篇
  国内免费   49篇
  2024年   10篇
  2023年   57篇
  2022年   63篇
  2021年   108篇
  2020年   95篇
  2019年   184篇
  2018年   91篇
  2017年   45篇
  2016年   30篇
  2015年   39篇
  2014年   61篇
  2013年   86篇
  2012年   37篇
  2011年   36篇
  2010年   19篇
  2009年   23篇
  2008年   28篇
  2007年   20篇
  2006年   20篇
  2005年   18篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   10篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有1146条查询结果,搜索用时 15 毫秒
31.
A new noninvasive screening tool for colorectal neoplasia detects epigenetic alterations exhibited by gastrointestinal tumor cells shed into stool. There is insufficient existing data to determine temporal associations between colorectal cancer (CRC) progression and aberrant DNA methylation. To evaluate the feasibility of using fecal DNA methylation status to determine CRC progression, we collected stool samples from 14 male SD rats aged six weeks, and administered subcutaneous injections of either 1,2-dimethylhydrazine or saline weekly. p16 DNA methylation statuses in tumorous and normal colon tissue, and from stool samples were determined using methylation-specific PCR. Additionally, p16 methylation was detected in stool DNA from 85.7% of the CRC rats. The earliest change in p16 methylation status in the DMH-treated group stool samples occurred during week nine; repeatabilities were 57.1% in week 19 (p = 0.070) and 85.7% in week 34 (p = 0.005). A temporal correlation was evidenced between progression of CRC and p16 methylation status, as evidenced by DMH-induced rat feces. Using fecal DNA methylation status to determine colorectal tissue methylation status can reveal CRC progression. Our data suggests that p16 promoter methylation is a feasible epigenetic marker for the detection and may be useful for CRC screening.  相似文献   
32.
Aneuploidy and chromosome instability (CIN) are hallmarks of the vast majority of solid tumors. However, the origins of aneuploid cells are unknown. The aim of this study is to improve our understanding of how aneuploidy and/or CIN arise and of karyotype evolution in cancer cells. By using fluorescence in situ hybridization (FISH) on cells after long-term live cell imaging, we demonstrated that most (> 90%) of the newly generated aneuploid cells resulted from multipolar divisions. Multipolar division occurred in mononucleated and binucleated parental cells, resulting in variation of chromosome compositions in daughter cells. These karyotypes can have the same chromosome number as their mother clone or lack a copy of certain chromosomes. Interestingly, daughter cells that lost a chromosome were observed to survive and form clones with shorter cell cycle duration. In our model of cancer cell evolution, the rapid proliferation of daughter cells from multipolar mitosis promotes colonal evolution in colorectal cancer cells.  相似文献   
33.
徐菱蔓  梁素英  黄远德  刘斌  郑洁 《生物磁学》2013,(36):7066-7068
目的:探讨FOLFOX方案联合西妥昔单抗治疗转移性结直肠癌的近期临床疗效及安全性。方法:选择2009年2月~2011年2月本院诊治的42例转移性结直肠癌患者为研究对象,采用随机数字表法将其随机分入对照组与观察组,其中对照组20例,观察组22例。对照组患者接受FOLFOX方案治疗,每2周重复1次,治疗3周期;观察组患者给予FOLFOX方案联合西妥昔单抗治疗。比较两组的近期疗效及毒副反应。结果:观察组的客观缓解率和疾病控制率均显著高于对照组,差别具有统计学意义(P〈0.05);骨髓抑制、消化道反应、神经毒性是两组常见的毒副反应,两组患者骨髓抑制、消化道反应、神经毒性、脱发及肝功能损害发生率无显著差别(P〉0.05),观察组痤疮样皮疹的发生率显著高于对照组(36.4%VS0,P〈0.05)。结论:西妥昔单抗联合FOLFOX方案可提高转移性结直肠癌患者的近期疗效,毒副反应可耐受。  相似文献   
34.
Small molecules with the potential to initiate different types of programmed cell death could be useful ‘adjunct therapy’ where current anticancer modalities fail to generate significant activity due to a defective apoptotic machinery or resistance of cancer cells to the specific death mechanism induced by that treatment. The current study identified silibinin, for the first time, as one such natural agent, having dual efficacy against colorectal cancer (CRC) cells. First, silibinin rapidly induced oxidative stress in CRC SW480 cells due to reactive oxygen species (ROS) generation with a concomitant dissipation of mitchondrial potential (ΔΨm) and cytochrome c release leading to mild apoptosis as a biological effect. However, with increased exposure to silibinin, cytoplasmic vacuolization intensified within the cells followed by sequestration of the organelles, which inhibits the further release of cytochrome c. Interestingly, this decrease in apoptotic response correlated with increased autophagic events as evidenced by tracking the dynamics of LC3-II within the cells. Mechanistic studies revealed that silibinin strongly inhibited PIK3CA-AKT–MTOR but activated MAP2K1/2-MAPK1/3 pathways for its biological effects. Corroborating these effects, endoplasmic reticulum stress was generated and glucose uptake inhibition as well as energy restriction were induced by silibinin, thus, mimicking starvation-like conditions. Further, the cellular damage to tumor cells by silibinin was severe and irreparable due to sustained interference in essential cellular processes such as mitochondrial metabolism, phospholipid and protein synthesis, suggesting that silibinin harbors a deadly ‘double-edged sword’ against CRC cells thereby further advocating its clinical effectiveness against this malignancy.  相似文献   
35.
《Epigenetics》2013,8(10):1431-1438
Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation.  相似文献   
36.
《Epigenetics》2013,8(4):492-502
Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.  相似文献   
37.
Colorectal cancer (CRC) is one of the common malignant tumors worldwide. Both genetic and epigenetic changes are regarded as important factors of colorectal carcinogenesis. Loss of DACH1 expression was found in breast, prostate, and endometrial cancer. To analyze the regulation and function of DACH1 in CRC, 5 colorectal cancer cell lines, 8 cases of normal mucosa, 15 cases of polyps and 100 cases of primary CRC were employed in this study. In CRC cell lines, loss of DACH1 expression was correlated with promoter region hypermethylation, and re-expression of DACH1 was induced by 5-Aza-2'-deoxyazacytidine treatment. We found that DACH1 was frequently methylated in primary CRC and this methylation was associated with reduction in DACH1 expression. These results suggest that DACH1 expression is regulated by promoter region hypermethylation in CRC. DACH1 methylation was associated with late tumor stage, poor differentiation, and lymph node metastasis. Re-expression of DACH1 reduced TCF/LEF luciferase reporter activity and inhibited the expression of Wnt signaling downstream targets (c-Myc and cyclinD1). In xenografts of HCT116 cells in which DACH1 was re-expressed, tumor size was smaller than in controls. In addition, restoration of DACH1 expression induced G2/M phase arrest and sensitized HCT116 cells to docetaxel. DACH1 suppresses CRC growth by inhibiting Wnt signaling both in vitro and in vivo. Silencing of DACH1 expression caused resistance of CRC cells to docetaxel. In conclusion, DACH1 is frequently methylated in human CRC and methylation of DACH1 may serve as detective and prognostic marker in CRC.  相似文献   
38.
《Autophagy》2013,9(8):1454-1465
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   
39.
40.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号