首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   109篇
  国内免费   49篇
  2024年   10篇
  2023年   57篇
  2022年   63篇
  2021年   108篇
  2020年   95篇
  2019年   184篇
  2018年   91篇
  2017年   45篇
  2016年   30篇
  2015年   39篇
  2014年   61篇
  2013年   86篇
  2012年   37篇
  2011年   36篇
  2010年   19篇
  2009年   23篇
  2008年   28篇
  2007年   20篇
  2006年   20篇
  2005年   18篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   10篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有1146条查询结果,搜索用时 31 毫秒
11.
Colorectal carcinoma (CRC) poses heavy burden to human health and has an increasing incidence. Currently, the existing biomarkers for CRC bring about restrained clinical benefits. GSK3β is reported to be a novel therapeutic target for this disease but with undefined molecular mechanisms. Thus, we aimed to investigate the regulatory effect of GSK3β on CRC progression via FTO/MZF1/c-Myc axis. Firstly, the expression patterns of GSK3β, FTO, MZF1 and c-Myc were determined after sample collection. Lowly expressed GSK3β but highly expressed FTO, MZF1 and c-Myc were found in CRC. After transfection of different overexpressed and interference plasmids, the underlying mechanisms concerning GSK3β in CRC cell functions were analysed. Additionally, the effect of GSK3β on FTO protein stability was assessed followed by detection of MZF1 m6A modification and MZF1-FTO interaction. Mechanistically, GSK3β mediated ubiquitination of demethylase FTO to reduce FTO expression. Besides, GSK3β inhibited MZF1 expression by mediating FTO-regulated m6A modification of MZF1 and then decreased the proto-oncogene c-Myc expression, thus hampering CRC cell proliferation. We also carried out in vivo experiment to verify the regulatory effect of GSK3β on CRC via FTO-mediated MZF1/c-Myc axis. It was found that GSK3β inhibited CRC growth in vivo which was reversed by overexpressing c-Myc. Taken together, our findings indicate that GSK3β suppresses the progression of CRC through FTO-regulated MZF1/c-Myc axis, shedding light onto a new possible pathway by which GSK3β regulates CRC.  相似文献   
12.
Protein arginine methyltransferase 5 (PRMT5) is a major enzyme responsible for generating monomethyl and symmetric dimethyl arginine in proteins. PRMT5 is essential for cell viability and development, and its overexpression is observed in a variety of cancers. In the present study, it is found that levels of PRMT5 protein and symmetric arginine dimethylation in colorectal cancer (CRC) tissues are increased compared to those in adjacent noncancerous tissues. Using immunoaffinity enrichment of methylated peptides combined with high‐resolution mass spectrometry, a total of 147 symmetric dimethyl‐arginine (SDMA) sites in 94 proteins are identified, many of which are RNA binding proteins and enzymes. Quantitative analysis comparing CRC and normal tissues reveals significant increase in the symmetric dimethylation of 70 arginine sites in 46 proteins and a decrease in that of four arginine sites in four proteins. Among the 94 proteins identified in this study, it is confirmed that KH‐type splicing regulatory protein is a target of PRMT5 and highly expressed in CRC tissues compared to noncancerous tissues. This study is the first comprehensive analysis of symmetric arginine dimethylation using clinical samples and extends the number of known in vivo SDMA sites. The data obtained are available via ProteomeXchange with the identifier PXD015653.  相似文献   
13.
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with an estimated 1.8 million new cases worldwide and associated with high mortality rates of 881 000 CRC‐related deaths in 2018. Screening programs and new therapies have only marginally improved the survival of CRC patients. Immune‐related genes (IRGs) have attracted attention in recent years as therapeutic targets. The aim of this study was to identify an immune‐related prognostic signature for CRC. To this end, we combined gene expression and clinical data from the CRC data sets of The Cancer Genome Atlas (TCGA) into an integrated immune landscape profile. We identified a total of 476 IRGs that were differentially expressed in CRC vs normal tissues, of which 18 were survival related according to univariate Cox analysis. Stepwise multivariate Cox proportional hazards analysis established an immune‐related prognostic signature consisting of SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC. The predictive ability of this signature for 3‐ and 5‐year overall survival was determined using receiver operating characteristics (ROC), and the respective areas under the curve (AUC) were 79.2% and 76.6%. The signature showed moderate predictive accuracy in the validation and GSE38832 data sets as well. Furthermore, the 8‐IRG signature correlated significantly with tumour stage, invasion, lymph node metastasis and distant metastasis by univariate Cox analysis, and was established an independent prognostic factor by multivariate Cox regression analysis for CRC. Gene set enrichment analysis (GSEA) revealed a relationship between the IRG prognostic signature and various biological pathways. Focal adhesions and ECM‐receptor interactions were positively correlated with the risk scores, while cytosolic DNA sensing and metabolism‐related pathways were negatively correlated. Finally, the bioinformatics results were validated by real‐time RT?qPCR. In conclusion, we identified and validated a novel, immune‐related prognostic signature for patients with CRC, and this signature reflects the dysregulated tumour immune microenvironment and has a potential for better CRC patient management.  相似文献   
14.
As a highly potent and highly selective oral inhibitor of FLT3/AXL, gilteritinib showed activity against FLT3D835 and FLT3‐ITD mutations in pre‐clinical testing, although its role on colorectal cancer (CRC) cells is not yet fully elucidated. We examined the activity of gilteritinib in suppressing growth of CRC and its enhancing effect on other drugs used in chemotherapy. In this study, we observed that, regardless of p53 status, treatment using gilteritinib induces PUMA in CRC cells via the NF‐κB pathway after inhibition of AKT and activation of glycogen synthase kinase 3β (GSK‐3β). PUMA was observed to be vital for apoptosis in CRC cells through treatment of gilteritinib. Moreover, enhancing induction of PUMA through different pathways could mediate chemosensitization by using gilteritinib. Furthermore, PUMA deficiency revoked the antitumour role of gilteritinib in vivo. Thus, our results indicate that PUMA mediates the antitumour activity of gilteritinib in CRC cells. These observations are critical for the therapeutic role of gilteritinib in CRC.  相似文献   
15.
m6A modification is the most prevalent RNA modification in eukaryotes. As the critical N6-methyladenosine (m6A) methyltransferase, the roles of methyltransferase like 3 (METTL3) in colorectal cancer (CRC) are controversial. Here, we confirmed that METTL3, a critical m6A methyltransferase, could facilitate CRC progression in vitro and in vivo. Further, we found METTL3 promoted CRC cell proliferation by methylating the m6A site in 3′-untranslated region (UTR) of CCNE1 mRNA to stabilize it. Moreover, we found butyrate, a classical intestinal microbial metabolite, could down-regulate the expression of METTL3 and related cyclin E1 to inhibit CRC development. METTL3 promotes CRC proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner, representing a promising therapeutic strategy for the treatment of CRC.  相似文献   
16.
Hsa_circ_0128846 was found to be the most significantly up‐regulated circRNA in our bioinformatics analysis. However, the role of hsa_circ_0128846 in colorectal cancer has not been explored. We thus aim to explore the influence and mechanism of hsa_circ_0128846 in colorectal cancer by sponging its downstream miRNA target miR‐1184. We collected 40 colorectal cancer patients’ tumour tissues to analyse the expression of hsa_circ_0128846, miR‐1184 and AJUBA using qRT‐PCR and Western blot where needed. Then, we constructed stably transfected SW480 and HCT116 cells to study the influence of hsa_circ_0128846, miR‐1184 and AJUBA on colorectal cancer cell phenotypes. To obtain reliable results, a plethora of experiments including RNA immunoprecipitation assay, flow cytometry, EdU incorporation assay, wound healing migration assay, transwell invasion assay and live imaging of nude mice xenograft assay were performed. The binding relationship between hsa_circ_0128846, miR‐1184 and AJUBA mRNA in colorectal cancer was validated by reported gene assay. In colorectal cancer tissues, circ_0128846 and AJUBA were both significantly up‐regulated, while miR‐1184 was significantly down‐regulated compared with healthy tissues. Meanwhile, hsa_circ_0128846 can absorb miR‐1184 to promote the progression of CRC in vivo and SW480 and HCT116 cell phenotypes in vitro. The knockdown of AJUBA, a downstream target of miR‐1184, reversed the effect of miR‐1184 in CRC cells via enhancing the phosphorylation of the Hippo/YAP signalling pathway proteins MST1, LATS1 and YAP. This study revealed that hsa_circ_0128846 contributed to the development of CRC by decreasing the expression of miR‐1184, thereby increasing AJUBA expression and inactivating Hippo/YAP signalling.  相似文献   
17.
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non‐coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6A is the most common. The function of m6A modifications is mainly regulated by 3 types of proteins: m6A methyltransferases (writers), m6A demethylases (erasers) and m6A‐binding proteins (readers). In this review, we focus on RNA m6A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.  相似文献   
18.
Colon cancer is one of the most common human malignancies, and chemotherapy cannot yet prevent recurrence in all patients. Essential oils are phytocomplexes with antiproliferative properties. In this study, we elucidated the antiproliferative properties and the effect on cell cycle progression of Sicilian Salvia officinalis essential oil and its three main compounds, α‐thujone, 1,8‐cineole (eucalyptol) and camphor, on three human colon cancer cell lines. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography. Cell proliferation was evaluated by MTT assay, and the cell cycle distribution was determined by flow cytometry. Thirty‐four compounds were identified in the tested essential oil. Growth inhibition was observed after 72 h, with an impact on cell cycle progression and no effect on the viability of normal colonic epithelial cells. The study shows that S. officinalis essential oil and its three main components have an in vitro antiproliferative effect on colon cancer cells.  相似文献   
19.
该文探讨了羽扇豆醇(Lupeol)对人结肠癌HCT116和SW620细胞增殖的影响及相关作用机制。使用不同浓度的Lupeol处理HCT116和SW620细胞后,用MTT法检测细胞活性,CCK8法检测细胞增殖能力,平板克隆实验检测细胞克隆形成能力,流式细胞术检测细胞周期和细胞凋亡,(quantitative real-time PCR,qPCR)和Western blot检测相应mRNA和蛋白表达水平,免疫荧光检测β-Catenin蛋白细胞内分布情况。通过构建shRNA敲低两种结肠癌细胞中RhoA,进一步研究Lupeol影响细胞增殖的分子机制。结果显示,Lupeol处理后,HCT116和SW620细胞增殖能力明显下降,克隆形成能力受到抑制,细胞周期阻滞于G0/G1期,细胞内RhoA、ROCK1、β-Catenin、Cyclin D1 mRNA和蛋白表达水平均显著下降,β-Catenin蛋白胞质和胞膜上分布减少。敲低RhoA后抑制了细胞增殖,同时使得RhoA-ROCK1-β-Catenin信号通路蛋白受到抑制,β-Catenin蛋白胞质和胞膜上分布减少。综上所述,Lupeol可通过抑制RhoA-ROCK1信号通路,抑制β-Catenin蛋白表达,进而抑制HCT116和SW620细胞增殖,Lupeol有望成为临床结肠癌治疗的新药物。  相似文献   
20.
DNA‐binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5‐fluorouracil (5‐FU)‐resistant and oxaliplatin (L‐OHP)‐resistant colorectal cancer (CRC) cells. We found that 5‐FU and L‐OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5‐FU and L‐OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5‐FU and SW620/L‐OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5‐FU and L‐OHP to SW620/5‐FU and SW620/L‐OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/β‐catenin pathway that induced by 5‐FU stimulation in SW620/5‐FU cells. Activation of the Wnt/β‐catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5‐FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5‐FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5‐FU via Wnt/β‐catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5‐FU and L‐OHP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号