首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1568篇
  免费   104篇
  国内免费   61篇
  2023年   18篇
  2022年   27篇
  2021年   38篇
  2020年   36篇
  2019年   51篇
  2018年   53篇
  2017年   37篇
  2016年   31篇
  2015年   44篇
  2014年   82篇
  2013年   107篇
  2012年   69篇
  2011年   72篇
  2010年   68篇
  2009年   80篇
  2008年   73篇
  2007年   87篇
  2006年   77篇
  2005年   42篇
  2004年   68篇
  2003年   51篇
  2002年   48篇
  2001年   35篇
  2000年   31篇
  1999年   33篇
  1998年   29篇
  1997年   18篇
  1996年   14篇
  1995年   24篇
  1994年   15篇
  1993年   15篇
  1992年   15篇
  1991年   13篇
  1990年   10篇
  1989年   8篇
  1988年   9篇
  1987年   8篇
  1986年   11篇
  1985年   19篇
  1984年   29篇
  1983年   16篇
  1982年   18篇
  1981年   10篇
  1980年   23篇
  1979年   15篇
  1978年   13篇
  1977年   11篇
  1976年   9篇
  1975年   5篇
  1973年   9篇
排序方式: 共有1733条查询结果,搜索用时 16 毫秒
141.
142.
Bioluminescence is a biochemical process occurring in many organisms. Bacterial bioluminescence has been investigated extensively that lead to many applications of such knowledge. Quorum sensing in the bioluminescent bacteria is a chemical signal process to recognize the strength of its own population to start luminescence in harmony. There is a mechanism in these bacteria to also recognize inter‐species strength. When there is a higher number of these bacteria, the possibility and frequency of cell–cell physical contact will be high. In this study, the physical proximity was artificially enhanced between cells and the effect on luminescence in the concentrated cells in the normal culture medium and in the presence of other non‐bacterial cell‐free supernatants was investigated. The role of such physical contact in the quorum sensing in the bioluminescence is not known. Increase in the luminescence of V. fischeri when concentrated shows that the presence of physical proximity facilitates the quorum sensing for their bioluminescence. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
143.
Sphingolipids are considered to play a key role in protein sorting and membrane trafficking. In melanocytic cells, sorting of lysosomal and melanosomal proteins requires the sphingolipid glucosylceramide (GlcCer). This sorting information is located in the lumenal domain of melanosomal proteins. We found that two processes dependent on lumenal pH, protein sialylation and lysosomal acid lipase (LAL) activity were aberrant in GM95 melanocyte cells, which do not produce glycosphingolipids. Using fluorescence lifetime imaging microscopy (FLIM), we found that the lumenal pH in the trans-Golgi network and lysosomes of wild-type melanocyte MEB4 cells are >1 pH unit lower than GM95 cells and fibroblasts. In addition to the lower pH found in vivo, the in vitro activity of the proton pump, the vacuolar-type H(+) -translocating ATPase (V-ATPase), was twofold higher in MEB4 compared to GM95 cells. The apparent K(i) for inhibition of the V-ATPase by concanamycin A and archazolid A, which share a common binding site on the c-ring, was lower in glycosphingolipid-deficient GM95 cells. No difference between the MEB4 and GM95 cells was found for the V-ATPase inhibitors apicularen A and salicylihalimide. We conclude that hyperacidification in MEB4 cells requires glycosphingolipids and propose that low pH is necessary for protein sorting and melanosome biogenesis. Furthermore, we suggest that glycosphingolipids are indirectly involved in protein sorting and melanosome biogenesis by stimulating the proton pump, possibly through binding of GlcCer. These experiments establish, for the first time, a link between pH, glycosphingolipids and melanosome biogenesis in melanocytic MEB4 cells, to suggest a role for glycosphingolipids in hyperacidification in melanocytes.  相似文献   
144.
The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.  相似文献   
145.
The chemistry of Type 2 copper depleted T2D Rhus laccase has been investigated with regard to the binding of peroxide, and the ability of the enzyme to undergo reduction and reoxidation. Although the peroxide affinity is diminished in the T2D enzyme (104 M?1) relative to the holo-enzyme ((? 108 M?1) the actual mode of binding as a Type 3 μ-peroxo complex remains, as indicated by absorption and CD spectral measurements. Anaerobic reductive and reoxidative titrations with hydroquinone and hydrogen peroxide respectively revealed that the Type 3 copper pairwise interaction is disrupted during reduction but can be restored on reoxidation. The concept of separate Type 2 and Type 3 copper redox centers is suggested to be inadequate in view of the loss of functional integrity by the Type 3 site on removal of Type 2 copper.  相似文献   
146.
There are six putative genes for multidrug and toxic compound extrusion (MATE) family multidrug efflux pumps in the chromosome of Vibrio cholerae. We have so far analyzed two MATE family pumps in V. cholerae non-O1 NCTC4716. Here we cloned four remaining genes for putative MATE family efflux pumps by the PCR method from this microorganism and designated them as vcmB, vcmD, vcmH and vcmN. Each one of the four genes was introduced and expressed in the drug hypersusceptible host Escherichia coli KAM32 cells. We observed elevated MICs of multiple antimicrobial agents, such as fluoroquinolones, aminoglycosides, ethidium bromide and Hoechst 33342 in the transformants. Energydependent efflux of substrate was observed with the transformed cells. We found that efflux activities of VcmB, VcmD and VcmH were Na+-dependent, but that of VcmN was Na+-independent. Thus, all six of the MATE family multidrug efflux pumps of V. cholerae non-O1 have been characterized. We also found that all six genes were expressed in cells of V. cholerae non-O1.  相似文献   
147.
In vitro compartmentalization (IVC) uses water-in-oil emulsions to create artificial cell-like compartments in which genes can be individually transcribed and translated. Here, we present a new application of IVC for the selection of DNA-nuclease inhibitors. We developed a nano-droplets delivery system that allows the transport of various solutes, including metal ions, into the emulsion droplets. This transport mechanism was used to regulate the activity of colicin nucleases that were co-compartmentalized with the genes, so that the nucleases were activated by nickel or cobalt ions only after the potential inhibitor genes have been translated. Thus, genes encoding nuclease inhibitors survived the digestion and were subsequently amplified and isolated. Selection is therefore directly for inhibition, and not for binding of the nuclease. The stringency of selection can be easily modulated to give high enrichments (100-500-fold) and recoveries. We demonstrated its utility by selecting libraries of the gene encoding the cognate inhibitor of colicin E9 (immunity protein 9, or Im9) for inhibition of another colicin (ColE7). The in vitro evolved inhibitors show significant inhibition of ColE7 both in vitro and in vivo. These Im9 variants carry mutations into residues that determine the selectivity of the natural counterpart (Im7) while completely retaining the residues that are conserved throughout the family of immunity protein inhibitors. The in vitro evolution process confirms earlier hypotheses regarding the "dual recognition" binding mechanism and the way in which new colicin-immunity pairs diverged from existing ones.  相似文献   
148.
The major barrier responsible for the slow pace of structure determination of integral membrane proteins is the difficulty of crystallizing detergent-solubilized hydrophobic proteins, particularly hetero-oligomeric integral membrane proteins. For the latter class of multi-subunit proteins, we have encountered the following problems in addition to the ubiquitous problem of detergent compatibility: (i) instability caused by over-purification that results in delipidation; (ii) protease activity degrading exposed loops and termini of subunits of the complex that could not be inhibited; (iii) poor protein–protein contacts presumably arising from masking by the detergent micelle. Problem (i) could be ameliorated in crystallization of the cytochrome b6f complex by augmenting the delipidated complex with synthetic lipid. Problem (ii) has not been solved. Problem (iii) has been solved in other systems by the use of monoclonal antibodies (or other protein ligands) to increase the probability of protein–protein contacts. In the case of the complex formed by the cobalamin and colicin receptor, BtuB, and the receptor binding domain of colicin E3, the latter served as a ligand for protein–protein contacts that facilitated crystallization.  相似文献   
149.
AIMS: To assess a collection of 96 Escherichia coli O157:H7 strains for their resistance potential against a set of colicinogenic E. coli developed as a probiotic for use in cattle. METHODS AND RESULTS: Escherichia coli O157:H7 strains were screened for colicin production, types of colicins produced, presence of colicin resistance and potential for resistance development. Thirteen of 14 previously characterized colicinogenic E. coli strains were able to inhibit 74 serotype O157:H7 strains. Thirteen E. coli O157:H7 strains were found to be colicinogenic and 11 had colicin D genes. PCR products for colicins B, E-type, Ia/Ib and M were also detected. During in vitro experiments, the ability to develop colicin resistance against single-colicin producing E. coli strains was observed, but rarely against multiple-colicinogenic strains. The ability of serotype O157:H7 strains to acquire colicin plasmids or resistance was not observed during a cattle experiment. CONCLUSIONS: Escherichia coli O157:H7 has the potential to develop single-colicin resistance, but simultaneous resistance against multiple colicins appears to be unlikely. Colicin D is the predominant colicin produced by colicinogenic E. coli O157:H7 strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for resistance development against colicin-based strategies for E. coli O157:H7 control may be very limited if more than one colicin type is used.  相似文献   
150.
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaldehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2′-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [VIVO(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [VVO(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of VIV → VV) in the synthesis of pentavalent complexes (5) and (6). [VIVO(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [VVO(L)(hq)] complexes are diamagnetic. The X-ray structure of [VVO(L2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by ∼0.07 Å and is identical with V-O (carboxylate) bond. 1H NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)-(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near −0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+E1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E1/2 increases in the order: (L2)2− < (L1)2−.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号