首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   915篇
  免费   51篇
  国内免费   3篇
  2024年   7篇
  2023年   2篇
  2022年   4篇
  2021年   14篇
  2020年   31篇
  2019年   28篇
  2018年   15篇
  2017年   20篇
  2016年   18篇
  2015年   15篇
  2014年   33篇
  2013年   42篇
  2012年   18篇
  2011年   34篇
  2010年   18篇
  2009年   40篇
  2008年   51篇
  2007年   69篇
  2006年   45篇
  2005年   53篇
  2004年   55篇
  2003年   34篇
  2002年   48篇
  2001年   37篇
  2000年   24篇
  1999年   27篇
  1998年   21篇
  1997年   16篇
  1996年   22篇
  1995年   17篇
  1994年   18篇
  1993年   19篇
  1992年   16篇
  1991年   17篇
  1990年   8篇
  1989年   14篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有969条查询结果,搜索用时 15 毫秒
71.
72.
Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.  相似文献   
73.
Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the time at which individuals return to breeding sites. Chinook salmon (Oncorhynchus tshawytscha) are excellent subjects for studying the genetic basis of temporal adaptation because their high seasonal homing fidelity promotes reproductive isolation leading to the formation of local populations across diverse environments. We tested for adaptive genetic differentiation between seasonal runs of Chinook salmon using two candidate loci; the circadian rhythm gene, OtsClock1b, and Ots515NWFSC, a microsatellite locus showing sequence identity to three salmonid genes central to reproductive development. We found significant evidence for two genetically distinct migratory runs in the Feather River, California (OtsClock1b: F(ST)=0.042, P=0.02; Ots515NWFSC: F(ST)=0.058, P=0.003). In contrast, the fall and threatened spring runs are genetically homogenous based on neutral microsatellite data (F(ST)=-0.0002). Similarly, two temporally divergent migratory runs of Chinook salmon from New Zealand are genetically differentiated based on polymorphisms in the candidate loci (OtsClock1b: F(ST)=0.083, P-value=0.001; Ots515NWFSC: F(ST)=0.095, P-value=0.000). We used an individual-based assignment method to confirm that these recently diverged populations originated from a single source in California. Tests for selective neutrality indicate that OtsClock1b and Ots515NWFSC exhibit substantial departures from neutral expectations in both systems. The large F(ST )estimates could therefore be the result of directional selection. Evidence presented here suggests that OtsClock1b and Ots515NWFSC may influence migration and spawning timing of Chinook salmon in these river systems.  相似文献   
74.
A transgenic cell line for the detection of salmon interferons (IFNs) has been established. It is based on a CHSE-214 cell line containing a reporter construct expressing firefly luciferase under the control of the rainbow trout promoter for the IFN-induced Mx1 gene. This cell line, named CHSE-Mx10, showed IFN-induced luciferase expression after more than 80 passages, confirming the stability of this cell line. Interestingly, the Mx promoter was shown to respond to both salmon IFN-alpha/beta and trout IFN-gamma in a dose-dependent manner, while there was no response to TNF-alpha and IL-1beta. IFN-alpha/beta activity could be measured at a range of 9-150 U/ml, and IFN-gamma showed activity between 10 and 100 ng/ml. The reproducibility of both responses was good. The CHSE-Mx10 reporter system constitutes a versatile tool to study the induction and regulation of IFN signaling in teleost fish. A preliminary study presented herein suggests that both infectious pancreas necrosis virus (IPNV) and salmon pancreas disease virus (SPDV) may block activation of the Mx promoter in CHSE-Mx10 stimulated with IFN-alpha/beta.  相似文献   
75.
The variability of 32 enzyme loci was studied in chum salmon populations with different types of reproduction—natural, mixed, and artificial—in some Magadan Region rivers. Among the populations studied, the values of mean heterozygosity and allele number per locus did not differ significantly. We found evidence of definite temporal stability of the populations, and also found that their genetic variability was expressed only slightly but still remained in spite of periodic egg transplantations between rivers. Statistically significant spatial genetic differentiation of the populations accounted for 0.55 to 0.76% of the total variation and the mean inter-year differentiation accounted for 0.30% of the total. Significant temporal (seasonal) genetic subdivision was revealed in chum salmon of the Tauy River. The populations of the Okhotsk Sea coast are very similar genetically to the east Sakhalin populations. The industrial chum salmon population founded and reproduced artificially in the Kulkuty River preserves the genetic similarity of the donor Yama River chum salmon. In the industrial population, we observed a tendency toward reduction of genetic variation over time. The contribution of the Yama population to the gene pool of the Ola chum salmon, (both by natural reproduction and by farming) is small in spite of many large-scale transplantations. However, the consequences of those transplantations are revealed by means of linkage disequilibrium analysis.  相似文献   
76.
Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to known bird homologues. A partially different disulphide bridge pattern was found in the Squamata (snakes and lizards). The possibility of a unique interdomain disulphide bridge was predicted for LtrF. Differences were found in iron-binding centers from those of previously known transferrins. Substitutions were found in the iron-chelating residues of StrF and TtrF and in the synergistic anion-binding residues of NtrF. In snakes, the transferrin (PtrF, HtrF and GtrF) N-lobe "dilysine trigger" occurring in all other known transferrins was not found, which indicates a different mechanism of iron release.  相似文献   
77.
78.
Predicting effects of climate change on species and ecosystems depend on understanding responses to shifts in means (such as trends in global temperatures), but also shifts in climate variability. To evaluate potential responses of anadromous fish populations to an increasingly variable environment, we performed a hierarchical analysis of 21 Chinook salmon populations from the Pacific Northwest, examining support for changes in river flows and flow variability on population growth. More than half of the rivers analyzed have already experienced significant increases in flow variability over the last 60 years, and this study shows that this increase in variability in freshwater flows has a more negative effect than any other climate signal included in our model. Climate change models predict that this region will experience warmer winters and more variable flows, which may limit the ability of these populations to recover.  相似文献   
79.
80.
We describe a distance-based clustering method using a proximity matrix of genetic distances to partition populations into genetically similar groupings. The optimization heuristic mean-field annealing (MFA) was used to find locally optimal solutions where exhaustive search was not possible. To illustrate this method, we analysed both simulated and real data sets. Simulated data indicated that MFA successfully differentiated population groups, even with small F(ST) values, as long as there was separation of within and between group distances. Reanalysis of microsatellite data from various human populations using mean-fields found similar ethnic groups corresponding to major geographic regions reported by Rosenberg et al. (2002) who used the model-based computer program Structure. However, with MFA, the Kalash population was found to group with other Central/South Asian populations instead of being the only member of its own genetic cluster. Europe/Middle East populations formed a separate group from Central/South Asian populations instead of being a single group in the Structure analysis. The MFA analysis determined the greatest genetic distances (largest mean intracluster distance) occurred in native American populations, identifying three groups instead of only one found with Structure. For conservation purposes, it is not only important to identify genetically similar groupings but also to determine the relative level of genetic differentiation captured within these groups. To illustrate this, we compare two separate MFA analyses of Chinook salmon (Oncorhynchus tshawytscha) populations from British Columbia, Canada. The software called PORGS-MFA used in this article can be downloaded from http://www.pac.dfo-mpo.gc.ca/science/facilities-installations/pbs-sbp/mgl-lgm/apps/porgs/index-eng.htm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号