首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4143篇
  免费   348篇
  国内免费   194篇
  2023年   66篇
  2022年   44篇
  2021年   79篇
  2020年   129篇
  2019年   153篇
  2018年   163篇
  2017年   162篇
  2016年   150篇
  2015年   168篇
  2014年   204篇
  2013年   346篇
  2012年   172篇
  2011年   190篇
  2010年   201篇
  2009年   245篇
  2008年   268篇
  2007年   276篇
  2006年   182篇
  2005年   155篇
  2004年   149篇
  2003年   130篇
  2002年   87篇
  2001年   65篇
  2000年   77篇
  1999年   51篇
  1998年   85篇
  1997年   58篇
  1996年   53篇
  1995年   38篇
  1994年   39篇
  1993年   41篇
  1992年   47篇
  1991年   39篇
  1990年   32篇
  1989年   38篇
  1988年   33篇
  1987年   34篇
  1986年   24篇
  1985年   16篇
  1984年   25篇
  1983年   22篇
  1982年   24篇
  1981年   19篇
  1980年   28篇
  1979年   18篇
  1978年   7篇
  1974年   10篇
  1973年   6篇
  1972年   9篇
  1971年   8篇
排序方式: 共有4685条查询结果,搜索用时 15 毫秒
61.
Summary ESS floral lifetimes satisfy the product theorem from sex allocation theory. The dimensionless time investment per flower is a symmetric function of two dimensionless gain : cost ratios, one for each gender function.  相似文献   
62.
 Evolution takes place in an ecological setting that typically involves interactions with other organisms. To describe such evolution, a structure is needed which incorporates the simultaneous evolution of interacting species. Here a formal framework for this purpose is suggested, extending from the microscopic interactions between individuals – the immediate cause of natural selection, through the mesoscopic population dynamics responsible for driving the replacement of one mutant phenotype by another, to the macroscopic process of phenotypic evolution arising from many such substitutions. The process of coevolution that results from this is illustrated in the context of predator–prey systems. With no more than qualitative information about the evolutionary dynamics, some basic properties of predator–prey coevolution become evident. More detailed understanding requires specification of an evolutionary dynamic; two models for this purpose are outlined, one from our own research on a stochastic process of mutation and selection and the other from quantitative genetics. Much of the interest in coevolution has been to characterize the properties of fixed points at which there is no further phenotypic evolution. Stability analysis of the fixed points of evolutionary dynamical systems is reviewed and leads to conclusions about the asymptotic states of evolution rather different from those of game-theoretic methods. These differences become especially important when evolution involves more than one species. Received 10 November 1993; received in revised form 25 July 1994  相似文献   
63.
Abstract. 60 of the 75 Banksia species are confined to southwestern Australia where five or six species often coexist. We explored the role of regional species richness, niche differentiation, and habitat specialization in structuring banksia assemblages. The diversity of growth forms and categories of seed production and response to fire were assessed in actual assemblages at 40 sites throughout southwestern Australia. Diversity indices at each site were compared with those from null communities assembled on the basis of the abundance and sociability of taxa in regional species pools. The relationship between local and regional species richness suggests that processes at the scale of 100-m2 quadrats limit local richness and therefore coexistence. However, there was no consistent evidence that taxa are differentiated by growth form or regeneration strategy. No particular biological profile makes a banksia adept at coexisting with a wide range of other taxa. Habitat specialization is an important factor contributing to lower local richness than would be predicted from niche differentiation of taxa in regional pools. There is recent empirical evidence of several mechanisms whereby the number of coexisting banksias is increased beyond the limits suggested by simple niche theories. Variability in the fire regime also provides a mechanism for maintaining local species richness because different fires favour recruitment of different taxa.  相似文献   
64.
Summary The classic Hawk—Dove game is extended to deal with continuous variation in resource-holding potential or RHP, when RHP is observable (via any sensory modality) but RHP difference is less than perfectly reliable as a predictor of the outcome of an escalated contest. The relationship between sensory and physical magnitudes of RHP is assumed to be governed by Fechner's psychophysical law, whose effect is that contestants interact as if they had perfect information about their relative RHP (as opposed to RHP difference). Thus, an animal is aggressive if its RHP exceeds a certain fraction, called its threshold, of its opponent's RHP and otherwise is non-aggressive; and the classic Hawk and Dove strategies correspond to zero and infinite thresholds, respectively. For RHPs drawn at random from an arbitrary Gamma distribution there is a unique evolutionarily stable strategy or ESS, which depends on a parameter measuring the reliability of RHP as a predictor of the outcome of a fight, on the ratio of the valueV of winning to the costC of losing (both measured in units of reproductive fitness) and on the mean µ and variance 2 of the RHP distribution. In a population at this ESS, ifV/C < 1 then the threshold is 1 and there is no fighting. AsV/C increases beyond 1 to a second critical value , however, the threshold decreases steadily from 1 to 0 and remains 0 forV/C > ; is an increasing function of , but a decreasing function of 2. That a lower variance of RHP can imply a lower escalation frequencyp is a novel insight of the analysis. The prediction is at first counterintuitive, because if the aggression threshold were fixed then larger variance would imply lowerp (dispersion effect of variance). When natural selection acts on the threshold, however, increasing the variance not only reduces the probability that an animal with larger RHP will be attacked by an animal with lower RHP at the existing threshold, but also reduces the expected costs of adopting that particular threshold, so that a mutant with a somewhat lower threshold can invade the population (selection effect of variance). Forp, the selection effect dominates toward the upper end of the interval 1 V/C .  相似文献   
65.
66.
Summary In a prior study we combined game theory and inclusive fitness models to examine whether the guarded altruism that can evolve among non-relatives (tit for tat, TFT) might also evolve among close relatives, supplanting unconditional altruism. In most cases, TFT replaced unconditional altruism in family-structured models. Even when TFT is selected at a single locus, however, by withholding altruism from non-reciprocating relatives it may qualify as an outlaw from the standpoint of modifier genes at other loci. Here we examine this possibility with a series of haploid, two-locus models in which a modifier gene transforms TFT into unconditional altruism. The modifier allele spreads to fixation whenever Hamilton's Rule is satisfied, resulting in an unconditional altruist replacing the TFT strategy. As such, TFT may be regarded as an outlaw vulnerable to suppression by alleles at other loci.  相似文献   
67.
The aim of this work is to study complex ecological models exhibiting simple dynamics. We consider large scale systems which can be decomposed into weakly coupled subsystems. Perturbation Theory is used in order to get a reduced set of differential equations governing slow time varying global variables. As examples, we study the influence of the individual behaviour of animals in competition and predator-prey models. The animals are assumed to do many activities all day long such as searching for food of different types. The degree of competition as well as the predation pressure are dependent upon these activities. Preys are more vulnerable when doing some activities during which they are very exposed to predators attacks rather than for others during which they are hidden. We study the effect of a change in the average individual behaviour of the animals on interspecific relationships. Computer simulations of the whole sets of equations are compared to simulations of the reduced sets of equations.  相似文献   
68.
Substitution processes are of two sorts: origination processes record the times at which nucleotide mutations that ultimately fix in the population first appear, and fixation processes record the times at which they actually fix. Substitution processes may be generated by combining models of population genetics—here the symmetrical-neutral, overdominance, underdominance, TIM, and SAS-CFF models—with the infinite-sites, no-recombination model of the gene. This paper is mainly concerned with a computer simulation study of these substitution processes. The rate of substitution is shown to be remarkably insensitive to the strength of selection for models with strong balancing selection caused by the genealogical drift of mutations through alleles held in the population by selection. The origination process is shown to be more regular than Poisson for the overdominance, TIM, and SAS-CFF models but more clustered for the underdominance model. A class of point processes called Sawyer processes is introduced to help explain these observations as well as the observation that the times between successive originations are nearly uncorrelated. Fixation processes are shown to be more complex than origination processes, with regularly spaced bursts of multiple fixations. An approximation to the fixation process is described. One important conclusion is that protein evolution is not easily reconciled with any of these models without adding perturbations that recur on a time scale that is commensurate with that of molecular evolution.  相似文献   
69.
Roots have the ability to change the direction of their forward growth. Sometimes these directional changes are rapid, as in mutations, or they are slower, as in tropisms. The gravitational force is always present and roots have an efficient graviperception mechanism which enables them to initiate gravitropic movements. In trying to model and simulate the course of gravitropic root movements with a view to analyse the component processes, the following aspects of the plant's interaction with gravity have been considered: (1) The level of organization (organism, organ, cell) at which the movement process is expressed; (2) whether the gravity stimulation event is dynamic or static (i.e. whether or not physiologically significant displacements take place with respect to the gravity vector); (3) the sub-systems involved in movement and the processes which they regulate; (4) the mathematical characterization of the relevant sub-systems. A further allied topic is the nature of nutational movements and whether they are linked with gravitropic movements in some way. In considering how they can best be modelled, two types of nutational movements are proponed: stochastic nutation and circumnutation. Most, if not all, natural movements developed in response to static gravistimulation can be viewed as gravimorphisms. This applies at the levels of cell, organ and organism. However, when a system at any one of these levels experiences dynamic gravistimulation, because of its inherent homeostatic properties, it is induced to regenerate a state similar to that previously held. Thus, gravitropism is a regenerative gravimorphic process at the level of the organ.  相似文献   
70.
Summary A state-dependent model has been used to predict daily and tidal patterns of migration, feeding and inactivity in juvenile plaice (Pleuronectes platessa L.) in their intertidal and shallow subtidal nursery areas. Vertical position, quantity of energy reserves and fullness of the gut characterized the state of individual fishes. If feeding is visually mediated, the model predicts that, by night, plaice should move to areas of low predation risk and become inactive, whereas by day, plaice should migrate to feed in areas of high prey encounter rate. Vertical zones adopted by day and night and, hence, patterns of migration, should depend on the distributions of predators and prey. When prey are more abundant in the intertidal zone, plaice should move onshore to feed as the tide rises and when prey are more abundant offshore, plaice should move offshore to feed by day. If predators are equally abundant in all zones, the fish should behave as if no predators were present, having no effective refuge. An increase in the abundance of predators with depth results in the restriction of plaice activities to shallower vertical zones, depending on the magnitude of the predation threat. Zones adopted thus depend on the trade-off between energy intake and predation risk. Concordance between predicted behaviour and observed patterns is evident in contrasting habitats. Migration and feeding in the Wadden Sea, where prey are more abundant on intertidal flats, is dominated by the tidal component, whereas on impoverished exposed beaches of the west coast of Scotland, the diurnal component is dominant. Tidally related behaviour persists in the latter environment, not predicted by the model and may be a consequence of using endogenous rhythms to approach optimal behavioural patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号