首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3450篇
  免费   678篇
  国内免费   2075篇
  2024年   57篇
  2023年   243篇
  2022年   223篇
  2021年   324篇
  2020年   318篇
  2019年   358篇
  2018年   272篇
  2017年   281篇
  2016年   295篇
  2015年   247篇
  2014年   255篇
  2013年   253篇
  2012年   216篇
  2011年   218篇
  2010年   205篇
  2009年   255篇
  2008年   219篇
  2007年   281篇
  2006年   236篇
  2005年   211篇
  2004年   175篇
  2003年   150篇
  2002年   136篇
  2001年   126篇
  2000年   99篇
  1999年   73篇
  1998年   89篇
  1997年   43篇
  1996年   65篇
  1995年   38篇
  1994年   30篇
  1993年   25篇
  1992年   43篇
  1991年   27篇
  1990年   28篇
  1989年   15篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   12篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1958年   8篇
排序方式: 共有6203条查询结果,搜索用时 843 毫秒
121.
An accepted criterion for measuring the success of ecosystem restoration is the return of biodiversity relative to intact reference ecosystems. The emerging global carbon economy has made landscape‐scale restoration of severely degraded Portulacaria afra (spekboom)‐dominated subtropical thicket, by planting multiple rows of spekboom truncheons, a viable land‐use option. Although large amounts of carbon are sequestered when planting a monoculture of spekboom, it is unknown whether this is associated with the return of other thicket biodiversity components. We used available carbon stock data from degraded, restored, and intact stands at one site, and sampled carbon stocks at restored stands at another site in the same plant community. We also sampled plant community composition at both sites. The total carbon stock of the oldest (50 years) post‐restoration stand (250.8 ± 14 t C ha?1) approximated that of intact stands (245 t C ha?1) and we observed a general increase in carbon content with restoration age (71.4 ± 24 t C ha?1 after 35 and 167.9 ± 20 t C ha?1 after 50 years). A multiple correspondence analysis separated degraded stands from stands under restoration based on ground cover, floristic composition, and total carbon stock. Older post‐restoration and intact stands were clustered according to woody canopy recruit abundance. Our results suggest that spekboom is an ecosystem engineer that promotes spontaneous return of canopy species and other components of thicket biodiversity. The spekboom canopy creates a cooler micro‐climate and a dense litter layer, both likely to favor the recruitment of other canopy species.  相似文献   
122.
ABSTRACT

The established practice of forest ecosystem inventory and monitoring is recognised as a main support for terrestrial natural renewable resource survey programmes. Inventory and monitoring programmes focused on an overall assessment of ecosystem attributes evolving into global environmental survey programmes have been devised, but implementation is still quite contradictory. The state-of-the-art is discussed here, with special reference to the European Union and Italy. Topical issues are reviewed, with selective concern to: remote sensing capability, probability sampling, forest type (habitat) classification and landscape ecology, sustainable management indicators. Benefits brought by information technology are highlighted. Its development and the implementation of approaches based on a sound “per habitat” landscape ecological perspective will bring unique benefits, thus leading to an effective integration among sector surveys aimed at global environmental inventory/monitoring.  相似文献   
123.
Abstract

Throughout the world, forest covers one-third of the land's area. Present and historical human activities caused tremendous land use changes and triggered the onset of unseen climate changes. Yet, these socio-economically based environmental changes interfere with services that forests provide to mankind from global to local scales. Densely populated regions such as Flanders (Belgium), with over 430 people per km2, have the dubious honour to serve as examples of extreme human induced forest changes. The issue of forest biodiversity is reviewed in the light of the Millennium Ecosystem Assessment scheme. Flanders is a poorly forested region (11% forest cover); supporting services are consequently low. Merely 16% of that area has known 230 years of continuous forest cover, representing forest with the highest current biodiversity. Also, the demands for regulating services are growing and the limits may have been reached. Provisioning services may increase again in future when demands for, for example bio-energy, increase. Cultural services, particularly the recreational function, have increased greatly. Human well-being in Flanders partly depends on the services provided by forest ecosystems. However, as demands on forests are huge, a shift to a sustainable use of forest resources will be essential to assure its beneficial role for present and future generations.  相似文献   
124.
The riparian flora and the level of invasion in the rivers of the Cantabric watershed in Spain were studied in relation to the ecological status and the anthropogenic pressure. The level of invasion was also analyzed in different riparian habitats: forests, river bars and man-made slopes. For this purpose, 18 sites were sampled and a list of native and alien plant species was made along a 100-m strip at each site. The habitat/s where alien species were found and their abundance per habitat and in the total area were also indicated. Out of 112 alien taxa found, 51 were classified as invasive. Exotic plants native to America were the most common (35%). The level of invasion was significantly higher in the sampling sites subject to high levels of hydrological and morphological disturbances, proxies of the anthropogenic pressure. River bars and man-made slopes supported similar number of alien plant species, higher than forests. We suggest that disturbance in river banks should be minimized as much as possible in order to diminish the risk of invasion.  相似文献   
125.
The non-linear, unexpected and severe responses of ecosystems to the environmental changes crossing ecological thresholds or environmental limits, necessitate the regular monitoring of the human-induced pressures to the urban ecosystems. The present study aims to introduce a spatial decision support system for sustainable environmental planning and management of urban ecosystems by establishing an Urban Carrying Capacity Load Number model (UCCLN) based on carrying capacity concepts and sustainability principles .This model, by applying 30 temporal and spatial indicators continuously monitors the environmental loads on the urban ecosystems. Environmental load was represented by load number index. It was calculated in each zone of study area (urban districts). Geographical Information System (GIS) was used to establish UCCLN model and Spatial Decision Support System (SDSS). The study area was Tehran metropolis, the capital of Iran. The results showed that none of the 115 urban districts of Tehran had optimal Total Load Number (TLN) ranging from (10 to100); 7 districts (6%) had low-to-medium range of TLN (TLN = 100–200); 11 districts (9.5%) had medium-to-high range (TLN = 200–300); 57 districts (49.5%) had high-to-very high range (TLN = 300–400); 40 districts (34.7%) had the TLN range of very high-to-critical (TLN = 400–500); and none of them had the TLN of 500. Furthermore, the results revealed that Tehran has already overshot its ecological thresholds. Not only most of the 30 indicators of environmental pressure in most of the districts (85%) had high DCC and LN scores, but also most of the 115 districts obtained high DCC, and as a result LN scores. The need for developing more efficient urban planning and management strategies to cope with the increasing environmental loads in the study area is inevitable.  相似文献   
126.
127.
Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr?1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr?1), river/stream evasion (158 ± 50 TgC yr?1), and fire emissions (142 ± 45 TgC yr?1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.  相似文献   
128.
Global losses of seagrasses and mangroves, eutrophication‐driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy‐two 0.25 m2 plots (= 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4+, dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus‐fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem.  相似文献   
129.
Arctic organisms are adapted to the strong seasonality of environmental forcing. A small timing mismatch between biological processes and the environment could potentially have significant consequences for the entire food web. Climate warming causes shrinking ice coverage and earlier ice retreat in the Arctic, which is likely to change the timing of primary production. In this study, we test predictions on the interactions among sea ice phenology and production timing of ice algae and pelagic phytoplankton. We do so using the following (1) a synthesis of available satellite observation data; and (2) the application of a coupled ice‐ocean ecosystem model. The data and model results suggest that, over a large portion of the Arctic marginal seas, the timing variability in ice retreat at a specific location has a strong impact on the timing variability in pelagic phytoplankton peaks, but weak or no impact on the timing of ice‐algae peaks in those regions. The model predicts latitudinal and regional differences in the timing of ice algae biomass peak (varying from April to May) and the time lags between ice algae and pelagic phytoplankton peaks (varying from 45 to 90 days). The correlation between the time lag and ice retreat is significant in areas where ice retreat has no significant impact on ice‐algae peak timing, suggesting that changes in pelagic phytoplankton peak timing control the variability in time lags. Phenological variability in primary production is likely to have consequences for higher trophic levels, particularly for the zooplankton grazers, whose main food source is composed of the dually pulsed algae production of the Arctic.  相似文献   
130.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号