首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   109篇
  国内免费   241篇
  2024年   10篇
  2023年   26篇
  2022年   24篇
  2021年   55篇
  2020年   63篇
  2019年   58篇
  2018年   42篇
  2017年   64篇
  2016年   51篇
  2015年   33篇
  2014年   50篇
  2013年   81篇
  2012年   41篇
  2011年   22篇
  2010年   43篇
  2009年   40篇
  2008年   28篇
  2007年   40篇
  2006年   46篇
  2005年   38篇
  2004年   22篇
  2003年   13篇
  2002年   37篇
  2001年   22篇
  2000年   24篇
  1999年   14篇
  1998年   12篇
  1997年   21篇
  1996年   13篇
  1995年   13篇
  1994年   9篇
  1993年   13篇
  1992年   13篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1958年   1篇
排序方式: 共有1128条查询结果,搜索用时 46 毫秒
31.
The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4) emissions can potentially offset the carbon burial rates in low‐salinity coastal wetlands, there is hitherto a paucity of direct and year‐round measurements of ecosystem‐scale CH4 flux (FCH4) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem‐scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4‐C m?2 day?1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4‐C m–2 year?1 while the annual net ecosystem CO2 exchange ranged between ?891 and ?690 g CO2‐C m?2 year?1, indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained‐flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem‐scale FCH4 in a mangrove wetland with long‐term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.  相似文献   
32.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   
33.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   
34.
杨彬  王玉  郝清玉 《广西植物》2020,40(3):422-432
木麻黄海防林是海南岛重要的海岸生态屏障,天然更新对其持续发挥防护功能具有重要意义。调查发现海南岛大多数木麻黄林林下天然更新困难,然而却存在局部更新良好的现象。为了探究天然更新存在巨大差异的原因,并为促进海南海防林由人工林向近自然林转化提供一定的理论基础,通过分析不同林地更新质量的差异,研究影响木麻黄海防林林下天然更新的主要影响因素。该研究在海南岛木麻黄海防林中共设置73块临时样地,采用方差分析和相关分析等统计方法,分别研究林地所属气候区、林分条件、土壤因子和凋落物累积量对天然更新质量和密度的影响。结果表明:(1)湿润气候区的木麻黄林下更新要显著优于半干旱区;(2)木麻黄林分密度与更新密度和草本盖度存在显著负相关,但林分条件其他因子对更新影响不大;(3)不同更新质量样地的土壤pH和养分均无显著性差异,但铵态氮对幼苗、有机质对幼树的更新存在一定的促进作用;(4)凋落物的累计整体不利于天然更新的进行。结果说明气候因子、木麻黄林分密度、木麻黄凋落物积累量是木麻黄海防林林下植物天然更新的主要影响因素。  相似文献   
35.
王玉  杨彬  郝清玉 《广西植物》2020,40(3):403-411
成功的天然更新应同时具备三个条件:(1)种源数量充足、质量良好;(2)适宜种子萌发的微生境;(3)幼苗、幼树存活的生态条件。为进一步揭示海南岛木麻黄(Casuarina equisetifolia)海防林自身无法天然更新的障碍因子,该文对影响其天然更新的三个条件之一的种子萌发条件进行了研究,并探讨了不同的生态因子,如木麻黄化感、土壤酸碱度、盐度、温度、基质类型、水分等对木麻黄种子萌发的影响。结果表明:(1)不同浸提物的不同浸提液浓度处理的种子萌发率与CK组无显著性差异。(2)设定范围内的pH、盐度和温度对木麻黄种子萌发率无显著影响。(3)不同浓度梯度PEG溶液处理的木麻黄种子萌发率存在显著性差异,且伴随PEG溶液浓度增加,木麻黄种子萌发率随之锐减。(4)不同基质及浇水频度对种子萌发率也具有显著影响。从综合PEG干旱胁迫、基质及浇水频度的结果可以发现,木麻黄种子抗旱能力较弱,对水分敏感。因此,水分是制约木麻黄种子萌发的主要限制因子,凋落物层及滨海沙土较差的保水性不同程度地制约了种子的萌发。  相似文献   
36.
37.
The presence of four sharks was documented in coastal waters of Antofagasta (Chile) using an unmanned aerial video camera. Fishers took advantage of this aggregation to catch and sold three adult broadnose sevengill sharks Notorynchus cepedianus. Species identity was determined by using the cox1 gene. One additional video was later recorded 3000 km south of Antofagasta, and shows a large female interacting with a salmon farming facility. Shallow water records of N. cepedianus were previously undocumented in Chilean waters, yet historically have provided an opportunistic event to fishers in Chile.  相似文献   
38.
Globally, increasing coastal development requires construction and maintenance of transportation infrastructure that affects terrestrial and aquatic ecosystems. Construction of bridges as part of transportation networks introduces a series of risks to aquatic species near construction zones. We reviewed relevant literature and obtained exemplary case studies to synthesize potential effects of bridge construction on the West Indian manatee (Trichechus manatus), a nearshore megafauna species vulnerable to human activities. Stages of bridge construction including dredging, pile driving, and installation and assembly of bridge components each involve potential direct and indirect effects on manatees. Direct effects such as vessel interactions, entanglement or ingestion, and entrainment may result in acute physical injury or mortality. Indirect effects from construction such as habitat obstruction or degradation and increased noise from construction activities can alter behavior and intraspecies communication and reduce access to essential resources. Some effects of construction may be immediately difficult to quantify, but cumulative effects through time can result in major habitat and species loss. To prevent large-scale negative effects of construction on manatees and other aquatic species, use and evaluation of mitigation strategies should be implemented pre-, during, and post-construction. As the global human population increasingly occupies coastal zones, effective planning of coastal development, including bridge and other in-water construction, will be essential to support conservation and recovery efforts for manatees and other species at risk in these areas. © 2021 The Wildlife Society.  相似文献   
39.
40.
Researchers reexamining the relationship between restoration science and practice report a continuing scientist‐practitioner gap. As a land manager with scientific training, I offer my perspective of the chasm and describe a restoration practice infused with as much science as the realities of limited budget and time allow. The coastal sage scrub (CSS) restoration project at Starr Ranch, a 1,585 ha Audubon preserve in southern California, combines non‐chemical invasive species control, restoration, and applied research. Our practices evolve from modified scientific approaches and the scientific literature. Results from experiments with non‐optimum replication (on effects of seed rates, soil tamping, and timing of planting) nonetheless had value for management decisions. A critical practice came from academic research that encouraged cost‐effective passive restoration. Our passive restoration monitoring data showed 28–100% total native cover after 3–5 years. Another published study found that restoration success in semiarid regions is dependent on rainfall, a finding vital for understanding active restoration monitoring results that showed a range of 0–88% total native cover at the end of the first season. Work progresses through a combination of applied research, a watchful eye on the scientific literature, and “ecological intuition” informed by the scientific literature and our own findings. I suggest that it is less critical for academic scientists to address the basic questions on technique that are helpful to land managers but rather advocate practitioner training in methods to test alternative strategies and long‐term monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号