首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   109篇
  国内免费   241篇
  2024年   10篇
  2023年   26篇
  2022年   24篇
  2021年   55篇
  2020年   63篇
  2019年   58篇
  2018年   42篇
  2017年   64篇
  2016年   51篇
  2015年   33篇
  2014年   50篇
  2013年   81篇
  2012年   41篇
  2011年   22篇
  2010年   43篇
  2009年   40篇
  2008年   28篇
  2007年   40篇
  2006年   46篇
  2005年   38篇
  2004年   22篇
  2003年   13篇
  2002年   37篇
  2001年   22篇
  2000年   24篇
  1999年   14篇
  1998年   12篇
  1997年   21篇
  1996年   13篇
  1995年   13篇
  1994年   9篇
  1993年   13篇
  1992年   13篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1958年   1篇
排序方式: 共有1128条查询结果,搜索用时 15 毫秒
11.
Ten species of aquatic macrophytes have been analyzed for seven environmental variables by means of a significance test. A synthetic view has been obtained through a cluster analysis for species and a principal component analysis for 17 variables which form the multidimensional space where we project the species habitats. Myriophyllum spicatum L., Najas marina L., Potamogeton crispus L., Potamogeton pectinatus L. and Zannichellia pedunculata Reichenb. are widely distributed in the Albufera. Ceratophyllum submersum L. and Ruppia maritima L. var. brevirostris Ag. are considered stenoic. The tolerance of Ceratophyllum submersum to salts is significantly low and that of Ruppia cirrhosa (Petagna) Grande and Ruppia maritima var. brevirostris significantly high. Ceratophyllum submersum has a significantly negative distribution with regard to chlorophyll a and phosphate concentrations. Ceratophyllum demersum L. and C. submersum primarily occur in nitrate-rich waters whereas Ruppia cirrhosa primarily occurs in low nitrate waters.  相似文献   
12.
This article concerns seasonal variations in the phosphate concentrations in two coastal lagoons near Montpellier (Mediterranean coast, France). The o-P concentration in the overlying water is highest during summer. The role of the sediment, particularly that of the different P fractions in the sediment, is discussed. Significant variations, especially in the FeOOH ≈ P fraction, occur. For both Tot-Psed and the Fe00H≈P fraction a gradient from surface to bottom is observed, as well as a distinct decrease in the FeOOH≈P fraction in the surface sediments during summer and autumn. Variations in the FeOOH≈P fraction appear to be compensated by variations in the CaC03≈P fraction. These variations appear to be determined by the ferric hydroxide concentration. This compound represents only a small part (maximally 15%) of the total iron in the sediments and is related to the dissolved oxygen content of the immediately overlying water. Besides the fractions o-P, Fe(OOH)≈P, a large part of the CaC03≈P fraction is potentially bioavailable. A large proportion of the Tot-Psed is therefore bioavailable.[/p]  相似文献   
13.
P. E. O'Sullivan 《Hydrobiologia》1993,251(1-3):351-361
In the period since 1945, Slapton Ley, a small, coastal lake in Southwest England, has been eutrophccated by nutrient inputs generated both by the intensification of agriculture, and the discharge of sewage effluent. Two simple models have been used to identify the main sources of catchment outputs, and to evaluate historical changes in land use, and their likely effect on lake trophic status.Restoration strategies may also be evaluated using the same models. They suggest that in order to reduce loads upon the Ley to within OECD permissible limits, not only will all sewage and phosphate detergent inputs need to be prevented, but also losses from agricultural land must be reduced. This could take the form of the zoning of the catchment so that riparian zones are used, not as at present, for the grazing of livestock, but are converted to woodland, and more particularly eg to buffer strips sensu Mander (1985, 1992).This policy, if implemented comprehensively, would reduce external phosphorus loads to within permissible limits. Eventually, however, some kind of internal control, such as manipulation of the fish populations, may also have to be attempted, in order to remove the memory of five decades of eutrophication.  相似文献   
14.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
15.
The effects of salinity on the reproduction of coastal submerged macrophyte species were studied on samples of communities from six seasonal marshes in two outdoor experiments performed in autumn and in spring. The submerged macrophyte communities were submitted to five different salinity levels (0, 1, 2, 4 and 6 g/1 Cl?1). In a companion paper (Grillas, van Wijck & Bonis 1993) three groups of species were distinguished on the basis of their biomass production over the salinity range 0 to 6 g/1 Cl?1: (1) glycophytes (non-salt-tolerant species), (2) salt-tolerant species and (3) halo-phytes. This part of the study describes the impact of salinity on the reproduction of the individual species during the two experiments. The species differ in their capacity to reproduce in the autumn; only Zannichelliapedunculata and Tolypella hispánica were able to produce fruits in that season. For all species reproduction was greater in spring and strongly correlated with biomass, except for Chara canescens. Differences in reproductive effort over the salinity range amplified the halophytic nature of Ruppia marítima and Chara canescens and the intolerance of Callitriche truncata and Chara contraria. For the other species, reproductive effort did not differ significantly over the salinity range. Regarding the effect of salinity on biomass and reproductive effort of individual species, there were large differences in the total weight of propagules produced at the community level and in the relative contribution of individual species. The resulting quantitative changes in the species composition of the seed bank could affect the structure of the communities by their effects on the establishment and survival of species populations.  相似文献   
16.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
17.
Abstract Efficient and accurate vegetation sampling techniques are essential for the assessment of wetland restoration success. Remotely acquired data, used extensively in many locations, have not been widely used to monitor restored wetlands. We compared three different vegetation sampling techniques to determine the accuracy associated with each method when used to determine species composition and cover in restored Pacific coast wetlands dominated by Salicornia virginica (perennial pickleweed). Two ground‐based techniques, using quadrat and line intercept sampling, and a remote sensing technique, using low altitude, high resolution, color and color infrared photographs, were applied to estimate cover in three small restoration sites. The remote technique provided an accurate and efficient means of sampling vegetation cover, but individual species could not be identified, precluding estimates of species density and distribution. Aerial photography was determined to be an effective tool for vegetation monitoring of simple (i.e., single‐species) habitat types or when species identities are not important (e.g., when vegetation is developing on a new restoration site). The efficiency associated with these vegetation sampling techniques was dependent on the scale of the assessment, with aerial photography more efficient than ground‐based sampling methods for assessing large areas. However, the inability of aerial photography to identify individual species, especially mixed‐species stands common in southern California salt marshes, limits its usefulness for monitoring restoration success. A combination of aerial photography and ground‐based methods may be the most effective means of monitoring the success of large wetland restoration projects.  相似文献   
18.
The abundance, generation time and production ofChironomus salinarius larvae in a lagoon fish-pond system in the Bay of Cádiz were studied by taking monthly samples at 3 sites during 1991 and 1992. Numerical abundance and biomass of larvae showed considerable spatial, seasonal and interannual variation (ANCOVAs,P<0.001). The maximum mean annual density was 7048 larvae m–2, and corresponded to a biomass of 3.08 g dry weight (DW) m–2. It was recorded at the site with the lowest rate of water renewal. Seasonal patterns were similar at all sites, with main annual peaks of abundance and biomass in autumn-early winter. Chironomid density was positively related to the biomass of benthic macroalgae (P<0.001). The population studied was multivoltine with a probable average of five generations per year, with overlapping cohorts and a predominance of third- and fourth-instar larvae. Estimates of annual production ranged between 72.2 g DW m–2 yr–1 at the site with the lowest rate of water renewal in 1991 and 0.1 g DW m–2 yr–1 at the site with the highest rate of water renewal in 1992. Mean annual production and the production/biomass ratio for the system was estimated to be 16.8 g DW m–2 yr–1 and 12.7, respectively. Possible factors leading to the observed density fluctuations are discussed, as well as possible sources of error in production estimates.  相似文献   
19.
Much of eastern Australia's coastal lowlands are underlain by Holocene sulfidic sediments. Large areas have been drained for agriculture. Drained, sulfidic sediments oxidize and produce highly acidic discharge (pH<4) with significant impacts on estuarine ecosystems. The rate of production of acid from drained floodplains is between 100 to 300 kg H2SO4 /ha/y and hundreds of tonnes of H2SO4 can be discharged in a single flood from the floodplain. Generation and export of acidity is controlled by the water balance of the floodplain, the characteristics of the drainage system and the distribution of sulfides. Evapotranspiration by native plants and crops plays a dominant role in the oxidation of sediments in dry periods. In wet periods, upland discharges to floodplains dominate the water balance. Drain spacing and drain depth are critical factors in the export of acidity into coastal streams. Amelioration of acidic outflows requires an understanding of the interaction between chemical and hydrological processes in sulfidic landscapes. Redesign of drainage systems to manage surface waters and reduce drain density with the treatment of drains with lime offer promise for treating acidic discharge and reducing impacts. Reflooding of drained, partially oxidized floodplains with freshwater may not be a panacea because of the large volumes of acid stored in the soil, a lack of labile organic matter in the sediments needed to reduce sulfate and irreversible changes to the soil due to oxidation. Tidal brackish water reflooding of unproductive acidified lowlands offers promise for rehabilitating wetlands. Sulfidic wetlands which are still undrained should remain so unless all acidic discharge can be treated.  相似文献   
20.
The hydrological structure of the French coastal part of the eastern English Channel is strongly linked with tidal regimes and riverine input. Two distinct water masses are separated by a frontal area and drift along the coast in SW–NE direction. These two water masses are well-mixed during the entire year. We studied the seasonal dynamic of nitrogenous nutrients, chlorophyll a and organic particulate carbon and nitrogen at two stations, characteristic of these water masses, during the year 1994. Results show (i) a winter stock of nitrate and ammonium, (ii) a pre-bloom period corresponding to the use of ammonium, (iii) a high bloom period of short duration using nitrate, (iv) a post-bloom period with little phytoplanktonic activity probably limited by nutrients other than nitrogen and (v) an autumnal period of reconstitution of stock. The essential difference between the two stations is the importance of winter stock of nutrients and of bloom chlorophyll a concentration, with the coastal station richer than the offshore one. An assumption about the nitrogen available for new production in this area gives a value of 57% of the winter stock of inorganic nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号