首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2996篇
  免费   460篇
  国内免费   508篇
  2024年   21篇
  2023年   88篇
  2022年   79篇
  2021年   108篇
  2020年   130篇
  2019年   154篇
  2018年   163篇
  2017年   167篇
  2016年   150篇
  2015年   136篇
  2014年   148篇
  2013年   156篇
  2012年   124篇
  2011年   161篇
  2010年   134篇
  2009年   164篇
  2008年   199篇
  2007年   165篇
  2006年   169篇
  2005年   132篇
  2004年   131篇
  2003年   133篇
  2002年   100篇
  2001年   96篇
  2000年   90篇
  1999年   65篇
  1998年   58篇
  1997年   36篇
  1996年   54篇
  1995年   44篇
  1994年   40篇
  1993年   47篇
  1992年   36篇
  1991年   30篇
  1990年   41篇
  1989年   27篇
  1988年   17篇
  1987年   17篇
  1986年   17篇
  1985年   27篇
  1984年   17篇
  1983年   10篇
  1982年   10篇
  1981年   17篇
  1980年   18篇
  1979年   11篇
  1978年   5篇
  1977年   9篇
  1973年   2篇
  1958年   4篇
排序方式: 共有3964条查询结果,搜索用时 15 毫秒
131.
132.
Short rotation coppice (SRC) of willow and poplar might be a promising phytoremediation option since it uses fast growing, high biomass producing tree species with often a sufficient metal uptake. This study evaluates growth, metal uptake and extraction potentials of eight willow clones (Belders, Belgisch Rood, Christina, Inger, Jorr, Loden, Tora and Zwarte Driebast) on a metal-contaminated agricultural soil, with total cadmium (Cd) and zinc (Zn) concentrations of 6.5 ± 0.8 and 377 ± 69 mg kg?1 soil, respectively. Although, during the first cycle, on average generally low productivity levels (3.7 ton DM (dry matter) ha?1 y?1) were obtained on this sandy soil, certain clones exhibited quite acceptable productivity levels (e.g. Zwarte Driebast 12.5 ton DM ha?1 y?1). Even at low biomass productivity levels, SRC of willow showed promising removal potentials of 72 g Cd and 2.0 kg Zn ha?1 y?1, which is much higher than e.g. energy maize or rapeseed grown on the same soil. Cd and Zn removal can be increased by 40% if leaves are harvested as well. Nevertheless, nowadays the wood price remains the most critical factor in order to implement SRC as an acceptable, economically feasible alternative crop on metal-contaminated agricultural soils.  相似文献   
133.
This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R2 > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry‐grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R2 > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution.  相似文献   
134.
Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2)‐fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground‐cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2‐fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte‐cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2‐fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes.  相似文献   
135.
Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood‐tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse.  相似文献   
136.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP, defined as the fraction of belowground NPP (BNPP) to NPP], and rain‐use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed‐grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP, and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP, RUEBNPP, and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP, RUEBNPP, and RUENPP. Clipping interacted with altered precipitation in impacting RUEANPP, RUEBNPP, and RUENPP, suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP. These findings suggest that BNPP is critical point to future research. Additionally, results from single‐factor manipulative experiments should be treated with caution due to the non‐additive interactive effects of warming with altered precipitation and land use (clipping).  相似文献   
137.
《Biomarkers》2013,18(3):202-207
Abstract

Inhibition of cholinesterase (ChE) activity produced by a single acute intraperitoneal administration of dimethoate was studied in the wood mouse, Apodemus sylvaticus, and the common shrew, Sorex araneus, under laboratory conditions. ChE values from serum and whole blood were compared with those obtained from brain in order to obtain a non-destructive tool for predicting the severity of brain acetylcholinesterase (AChE) inhibition. In addition, serum and brain inhibition following oral exposure to dimethoate was also measured in the wood mouse. Normal ChE activity was higher in the brain and whole blood of the shrews than in wood mice. There was no difference between species in serum ChE activity. Exposure to dimethoate caused a dose-dependent reduction in ChE activity and there was a significant recovery in activity with increasing time after administration. In both species, serum and whole blood were more sensitive than brain for revealing organophosphate-induced ChE inhibition and serum was more sensitive than whole blood. Statistically significant relationships were defined between whole blood and brain ChE activity and between serum and brain ChE activity. Compared with serum, whole blood ChE activity was the more accurate predictor of brain AChE levels. The relationships between brain and serum ChE activity did not appear to be affected by the route of administration of the pesticide.  相似文献   
138.
139.
Elephant populations are in decline across the African continent, but recent aerial surveys show that populations in Uganda are increasing. However, threats such as poaching and habitat disturbance remain. Having a comprehensive knowledge of the ranging behaviour of Ugandan elephants is crucial to understanding where critical habitat for the species occurs. We investigated various aspects of ranging behaviour of 45 radio-collared elephants (Loxodonta africana) in three areas—Queen Elizabeth Protected Area (QEPA), Murchison Falls (MFPA) Protected Area and Kidepo Valley (KVCA) Conservation Area. We also set Ugandan analyses in a continental context by comparison with home ranges reported in published literature. Elephants within KVCA had larger core ranges than elephants in QEPA or MFPA. Wet season ranges in KVCA were much larger than dry season ranges. The most important core areas in all three national parks were centred around water resources. Home range size was negatively correlated with net primary productivity (NPP) at Ugandan (N = 39 individuals) and continental (N = 17 sites) scales. This study indicates that, at a local scale, factors such as water source location are important in shaping elephant ranging behaviour. At larger scales, factors such as NPP are good predictors of elephant home range size.  相似文献   
140.
We discuss the possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity. The parallelism of the fossil records of marine phytoplankton and faunal biodiversity implicates the quantity (primary productivity) and quality (stoichiometry) of phytoplankton as being critical to the diversification of the marine biosphere through the Phanerozoic. The relatively subdued marine biodiversity of the Palaeozoic corresponds to a time of relatively low macronutrient availability and poor food quality of the phytoplankton as opposed to the diversification of the Modern Fauna through the Mesozoic–Cenozoic. Increasing nutrient runoff to the oceans through the Phanerozoic resulted from orogeny, the emplacement of Large Igneous Provinces (LIPs), the evolution of deep-rooting forests and the appearance of more easily decomposable terrestrial organic matter that enhanced weathering. Positive feedback by bioturbation of an expanding benthos played a critical role in evolving biogeochemical cycles by linking the oxidation of dead organic matter and the recycling of nutrients back to the water column where they could be re-utilized. We assess our conclusions against a recently published biogeochemical model for geological time-scales. Major peaks of marine diversity often occur near rising or peak fluxes of silica, phosphorus and dissolved reactive oceanic phosphorus; either major or minor 87Sr/86Sr peaks; and frequently in the vicinity of major (Circum-Atlantic Magmatic Province) and minor volcanic events, some of which are associated with Oceanic Anoxic Events. These processes appear to be scale-dependent in that they lie on a continuum between biodiversification on macroevolutionary scales of geological time and mass extinction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号