首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2996篇
  免费   459篇
  国内免费   509篇
  3964篇
  2024年   21篇
  2023年   88篇
  2022年   79篇
  2021年   108篇
  2020年   130篇
  2019年   154篇
  2018年   163篇
  2017年   167篇
  2016年   150篇
  2015年   136篇
  2014年   148篇
  2013年   156篇
  2012年   124篇
  2011年   161篇
  2010年   134篇
  2009年   164篇
  2008年   199篇
  2007年   165篇
  2006年   169篇
  2005年   132篇
  2004年   131篇
  2003年   133篇
  2002年   100篇
  2001年   96篇
  2000年   90篇
  1999年   65篇
  1998年   58篇
  1997年   36篇
  1996年   54篇
  1995年   44篇
  1994年   40篇
  1993年   47篇
  1992年   36篇
  1991年   30篇
  1990年   41篇
  1989年   27篇
  1988年   17篇
  1987年   17篇
  1986年   17篇
  1985年   27篇
  1984年   17篇
  1983年   10篇
  1982年   10篇
  1981年   17篇
  1980年   18篇
  1979年   11篇
  1978年   5篇
  1977年   9篇
  1973年   2篇
  1958年   4篇
排序方式: 共有3964条查询结果,搜索用时 0 毫秒
121.
亚热带森林生态系统具有巨大的固碳潜力。净初级生产力(NPP)在碳循环过程中具有重要的作用, 受到气候变化、大气成分、森林扰动的强度和频度、林龄等因子的综合影响, 然而目前上述各因子对亚热带森林NPP变化的贡献尚不明确, 需要鉴别森林NPP时空变化的主要驱动因子, 以准确认识亚热带森林生态系统碳循环。该文综合气象数据、年最大叶面积指数(LAI)、参考年NPP (BEPS模型模拟)、林龄、森林类型、土地覆盖、数字高程模型(DEM)、土壤质地、CO2浓度、氮沉降等多源数据, 利用InTEC模型(Integrated Terrestrial Ecosystem Carbon-budget Model)研究亚热带典型地区江西省森林生态系统1901-2010年NPP时空动态变化特征, 通过模拟情景设计, 着重讨论1970-2010年气候变化、林龄、CO2浓度和氮沉降对森林NPP动态变化的影响。研究结果如下: (1) InTEC模型能较好地模拟研究区NPP的时空变化; (2)江西省森林NPP 1901-2010年为(47.7 ± 4.2) Tg C·a-1 (平均值±标准偏差), 其中20世纪70年代、80年代、90年代分别为50.7、48.8、45.4 Tg C·a-1, 2000-2009年平均为55.2 Tg C·a-1; 随着森林干扰后的恢复再生长, 江西省森林NPP显著上升, 2000-2009年NPP增加的森林面积占森林总面积的60%; (3) 1970-2010年, 仅考虑森林干扰因子和仅考虑非干扰因子(气候、氮沉降、CO2浓度)情景下NPP分别为43.1和53.9 Tg C·a-1, 比综合考虑干扰因子和非干扰因子作用下的NPP分别低估7.3 Tg C·a-1 (低估的NPP与综合考虑干扰因子和非干扰因子作用下NPP的比值为14.5%,下同)和高估3.6 Tg C·a-1 (7.1%); 气候因子导致平均NPP减少2.0 Tg C·a-1 (4.7%), 氮沉降导致平均NPP增加4.5 Tg C·a-1 (10.4%), CO2浓度变化及耦合效应(氮沉降+ CO2浓度变化)分别导致平均NPP增加4.4 Tg C·a-1 (10.3%)和9.4 Tg C·a-1 (21.8%)。  相似文献   
122.
A new silicified wood, Sclerospiroxylon xinjiangensis Wan, Yang et Wang nov. sp., is described from the Cisuralian (lower Permian) Hongyanchi Formation in southeast Tarlong section, Turpan City, Xinjiang Uygur Autonomous Region, northwestern China. The fossil wood is composed of pith, primary xylem and Prototaxoxylon-type secondary xylem. The pith is solid, circular, heterocellular, with sclerenchyma and parenchyma. The primary xylem is endarch to mesarch, with scalariform thickenings on tracheid walls. The secondary xylem is pycnoxylic, composed of tracheids and parenchymatous rays. Growth rings are distinct. Tracheids have mostly uniseriate, partially biseriate araucarian pitting on their radial walls. Helical thickenings are always present on both the radial and the tangential walls. Rays are 2–14 cells high, with smooth walls. There are 2 to 7, commonly 2 to 4 cupressoid pits in each cross-field. Leaf traces suggest that Sxinjiangensis nov. sp. was evergreen with a leaf retention time of at least 15 years. Based on the sedimentological evidence, growth rings within the Sxinjiangensis nov. sp. could have been caused by seasonal climatic variations, with unfavorable seasons of drought or low temperature. Low percentage of latewood in each growth ring is probably due to the intensity of climatic seasonality and/or long leaf longevity.  相似文献   
123.
对Alcaligenes eutrophus进行高密度培养,研究表明在发酵过程中进行有效控制,可以较大幅度地提高3-羟基丁酸和3-羟基戊酸共聚物[P(3HB-co-3HV)]的生产强度。实验中选择使用限氮的方法积累P(3HB-co-3HV),分别采用丙酸和戊酸为3HV前体,对摇瓶种子生长状态,停氮时机对菌体生产P(3HB-co-3HV)的影响以及补酸(3HV前体)策略进行了研究,在6.6L罐中,以葡萄糖为碳源,以丙酸为3HV前体培养50h,细胞干重,PHA产量,PHA含量分别达到149.9g/L,149.9g/L,83.3%(其中3HV组分占PHA的12.4mol%),生产强度达到2.50(g.h^-1.L^-1);以戊酸为3HV前体培养45h,细胞干重,PHA产量,PHA含量分别达到160.2g/L,119.0g/L,74.2%(其中3HV组分占PHA的17.7mol%)生产强度达到2.64(g.h^-1.L^-1)。  相似文献   
124.
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity–ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above‐ and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small‐scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12‐year‐old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.  相似文献   
125.
When competitive exclusion between lineages and genetic adaptation within lineages occur on the same timescale, the two processes have the potential to interact. I use experimental microbial evolution where strains of a photosynthetic microbe that differ in their physiological response to CO2 enrichment are grown either alone or in communities for hundreds of generations under CO2 enrichment. After about 300 generations of growth, strains that experienced competition while adapting to environmental change are both less productive and less fit than corresponding strains that adapted to that same environmental change in the absence of competitors. In addition, I find that excluding competitors not only limits that strain''s adaptive response to abiotic change, but also decreases community productivity; I quantify this effect using the Price equation. Finally, these data allow me to empirically test the common hypothesis that phytoplankton that are most able to take advantage of carbon enrichment in single-strain populations over the short term will increase in frequency within multi-strain communities over longer timescales.  相似文献   
126.
Keskin O  Ji X  Blaszcyk J  Covell DG 《Proteins》2002,49(2):191-205
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) belongs to a class of catalytic enzymes involved in phosphoryl transfer and is a new target for the development of novel antimicrobial agents. In the present study, the fundamental consideration is to view the overall structure of HPPK as a network of interacting residues and to extract the most cooperative collective motions that define its global dynamics. A coarse-grained model, harmonically constrained according to HPPK's crystal structure is used. Four crystal structures of HPPK (one apo and three holo forms with different nucleotide and pterin analogs) are studied with the goal of providing insights about the function-dynamic correlation and ligand induced conformational changes. The dynamic differences are examined between HPPK's apo- and holo-forms, because they are involved in the catalytic reaction steps. Our results indicate that the palm-like structure of HPPK is nearly rigid, whereas the two flexible loops: L2 (residues 43-53) and L3 (residues 82-92) exhibit the most concerted motions for ligand recognition and presumably, catalysis. These two flexible loops are involved in the recognition of HPPKs nucleotide and pterin ligands, whereas the rigid palm region is associated with binding of these cognate ligands. Six domains of collective motions are identified, comprised of structurally close but not necessarily sequential residues. Two of these domains correspond to the flexible loops (L2 and L3), whereas the remaining domains correspond to the rigid part of the molecule.  相似文献   
127.
128.
Tree root systems, which play a major role in below-ground carbon (C) dynamics, are one of the key research areas for estimating long-term C cycling in forest ecosystems. In addition to regulating major C fluxes in the present conditions, tree root systems potentially hold numerous controls over forest responses to a changing environment. The predominant contribution of tree root systems to below-ground C dynamics has been given little emphasis in forest models. We developed the TRAP model, i.e. Tree Root Allocation of Photosynthates, to predict the partitioning of photosynthates between the fine and coarse root systems of trees among series of soil layers. TRAP simulates root system responses to soil stress factors affecting root growth. Validation data were obtained from two Belgian experimental forests, one mostly composed of beech (Fagus sylvatica L.) and the other of Scots pine (Pinus sylvestris L.). TRAP accurately predicted (R = 0.88) night-time CO2 fluxes from the beech forest for a 3-year period. Total fine root biomass of beech was predicted within 6% of measured values, and simulation of fine root distribution among soil layers was accurate. Our simulations suggest that increased soil resistance to root penetration due to reduced soil water content during summer droughts is the major mechanism affecting the distribution of root growth among soil layers of temperate Belgian forests. The simulated annual rate of C input to soil litter due to the fine root turnover of the Scots pine was 207 g C m–2 yr–1. The TRAP model predicts that fine root turnover is the single most important source of C to the temperate forest soils of Belgium.  相似文献   
129.
The eastern U.S. receives elevated rates of Ndeposition compared to preindustrial times, yetrelatively little of this N is exported indrainage waters. Net uptake of N into forestbiomass and soils could account for asubstantial portion of the difference between Ndeposition and solution exports. We quantifiedforest N sinks in biomass accumulation andharvest export for 16 large river basins in theeastern U.S. with two separate approaches: (1)using growth data from the USDA ForestService's Forest Inventory and Analysis (FIA)program, and (2) using a model of forestnitrogen cycling (PnET-CN) linked to FIAinformation on forest age-class structure. Themodel was also used to quantify N sinks in soiland dead wood, and nitrate losses below therooting zone. Both methods agreed that netgrowth rates were highest in the relativelyyoung forests on the Schuylkill watershed, andlowest in the cool forests of northern Maine. Across the 16 watersheds, wood export removedan average of 2.7 kg N ha–1 yr–1(range: 1–5 kg N ha–1 yr–1), andstanding stocks increased by 4.0 kg N ha–1yr–1 (–3 to 8 kg N ha–1 yr–1). Together, these sinks for N in woody biomassamounted to a mean of 6.7 kg N ha–1yr–1 (2–9 kg N ha–1 yr–1), or73% (15–115%) of atmospheric N deposition. Modeled rates of net N sinks in dead wood andsoil were small; soils were only a significantnet sink for N during simulations ofreforestation of degraded agricultural sites. Predicted losses of nitrate depended on thecombined effects of N deposition, and bothshort- and long-term effects of disturbance. Linking the model with forest inventoryinformation on age-class structure provided auseful step toward incorporating realisticpatterns of forest disturbance status acrossthe landscape.  相似文献   
130.
Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient 350 (=1= 25) μmol/mol) under two planting densities (28 or 84 plants/mz) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号