首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  国内免费   11篇
  2023年   1篇
  2022年   3篇
  2019年   2篇
  2018年   5篇
  2015年   1篇
  2014年   4篇
  2013年   8篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
排序方式: 共有62条查询结果,搜索用时 218 毫秒
31.
The RNA chaperone protein Hfq is required for the function of all small RNAs (sRNAs) that regulate mRNA stability or translation by limited base pairing in Escherichia coli. While there have been numerous in vitro studies to characterize Hfq activity and the importance of specific residues, there has been only limited characterization of Hfq mutants in vivo. Here, we use a set of reporters as well as co-immunoprecipitation to examine 14 Hfq mutants expressed from the E. coli chromosome. The majority of the proximal face residues, as expected, were important for the function of sRNAs. The failure of sRNAs to regulate target mRNAs in these mutants can be explained by reduced sRNA accumulation. Two of the proximal mutants, D9A and F39A, acted differently from the others in that they had mixed effects on different sRNA/mRNA pairs and, in the case of F39A, showed differential sRNA accumulation. Mutations of charged residues at the rim of Hfq interfered with positive regulation and gave mixed effects for negative regulation. Some, but not all, sRNAs accumulated to lower levels in rim mutants, suggesting qualitative differences in how individual sRNAs are affected by Hfq. The distal face mutants were expected to disrupt binding of ARN motifs found in mRNAs. They were more defective for positive regulation than negative regulation at low mRNA expression, but the defects could be suppressed by higher levels of mRNA expression. We discuss the implications of these observations for Hfq binding to RNA and mechanisms of action.  相似文献   
32.
33.
A protein kinase containing Z-DNA binding domains (PKZ), which resembles protein kinase R (PKR) in domain organization, was recently discovered to be a member of the eIF2α kinase family in fish. PKR has roles in antiviral immunity through inhibiting protein synthesis and activating NF-κB; therefore, it is thought that PKZ may have a similar role in fish antiviral immunity. In the present study, the roles of two Danio rerio PKZ isoforms (DrPKZ-A and DrPKZ-B) in eIF2α phosphorylation and protein synthesis regulation were explored. DrPKZ-A and DrPKZ-B possess N-terminal Z-DNA binding domains and a conserved eIF2α kinase domain; however, they have domains of differing lengths inserted between kinase subdomains IV and V. DrPKZ-A has an insert domain of 73 amino acids (aa), whereas DrPKZ-B has an insert sequence of only 10 aa, suggesting that DrPKZ-B could be a dysfunctional isoform or could interact with different substrates. Our results show that both DrPKZ-A and DrPKZ-B functionally interact with eIF2α and inhibit protein synthesis, although DrPKZ-B possesses attenuated kinase activity. Our results also show that deletion of the insert in either isoform results in the complete abrogation of kinase activity, suggesting that the insert is critical for PKZ kinase activity. Kinase activity appears to be independent of insert length but may depend on the presence of specific amino acids within the insert domain. Furthermore, the effects of the N-terminal regulatory domain on kinase activity were analyzed. Deletion of the N-terminus results in reduced kinase activity of these isoforms relative to the wild-type forms, indicating that the isolated kinase domain is sufficient for eIF2α phosphorylation and that DrPKZ-A and DrPKZ-B may be regulated in a similar manner. Overall, our results show that DrPKZ-B is a functional kinase in zebrafish and contribute to our understanding of the function of PKZ in fish.  相似文献   
34.
Using a yeast two-hybrid system, we identified NtRpn3, a regulatory subunit of 26S proteasome, as an interacting protein of NtCDPK1 calcium-dependent protein kinase in Nicotiana tabacum. Rpn3 in yeast is an essential protein involved in proteolysis of cell cycle regulatory proteins, and the carrot homolog of Rpn3 was previously isolated as a nuclear antigen that is mainly expressed in the meristem. NtCDPK1 physically interacts with NtRpn3 in vitro in a Ca2+-independent manner and phosphorylates NtRpn3 in a Ca2+-dependent manner with Mg2+ as a cofactor. NtCDPK1 and NtRpn3 are co-localized in the nucleus, nuclear periphery, and around plasma membrane in vivo. Both NtCDPK1 and AtRpn3, an NtRpn3 homolog of Arabidopsis, are mainly expressed in the rapidly proliferating tissues including shoot and root meristems, and developing floral buds. Virus-induced gene silencing of either NtRpn3 or NtCDPK1 resulted in the phenotypes of abnormal cell morphology and premature cell death in newly emerged leaves. Finally, NtCDPK1 interacts with NtRpn3 in vivo as shown by co-immunoprecipitation. Based on these results, we propose that NtCDPK1 and NtRpn3 are interacting in a common signal transduction pathway possibly for regulation of cell division, differentiation, and cell death in tobacco.  相似文献   
35.
Protein phosphatase 1 is regulated by the interaction between a catalytic subunit (PP1c) and multiple interacting proteins that allow the specific dephosphorylation of diverse cellular targets. This communication proposes to use the simultaneous presence of distinct consensus PP1c docking motifs R/K-x(0,1)-V-x-F and F-x-x-R/K-x-R/K as a signature to identify proteins putatively interacting with the PP1c. To develop this concept, we propose a new website, http://pp1 signature.pasteur.fr, which allows the identification of putative PP1-interacting proteins containing the two distinct PP1c docking consensus motifs represented in the Swissprot library. To validate the new concept of signature, we were able to characterise, by co-immunoprecipitation, four new PP1c interacting proteins randomly selected from the database in our website.  相似文献   
36.
从人白细胞cDNA文库筛选凋亡素相互作用蛋白   总被引:5,自引:0,他引:5  
来源于鸡贫血病毒的小分子蛋白-凋亡素(apoptin)能够选择性诱导肿瘤细胞凋亡,为研究其选择性诱导肿瘤细胞凋亡的分子机制,利用酵母双杂交系统筛选从人白细胞cDNA文库筛选apoptin相互作用蛋白,核酸序列分析及同源性检索表明,其中一个与ABP280(actin-binding protein 280)有高度同源性.细胞免疫共沉淀实验结果显示:在哺乳动物细胞水平仍能够检测到apoptin与ABP280片段的特异的相互作用.分别构建缺失C端11个氨基酸、中间33~46位氨基酸和二者均缺失的apoptin的3个突变体, 突变体与ABP280相互作用研究表明:apoptin的33~46位氨基酸(核外运信号)对于apoptin 与ABP280的相互作用是必需的,而C端核定位信号/DNA结合序列对于apoptin 与ABP280的相互作用不是充分必要的.  相似文献   
37.
帕金森病(Parkinson's disease,PD)是常见的神经系统变性疾病.分子遗传学研究发现,突变的Parkin蛋白及PINK1蛋白均参与了帕金森病的致病过程,但二者之间是否存在相互作用以及是否能够相互调节仍不十分清楚.为明确生理状态下Parkin蛋白与PINK1蛋白之间的相互作用,首先运用蛋白体外结合实验(GST pull-down)技术及免疫共沉淀技术证实了Parkin与PINK1在体外及体内均可相互结合.进一步构建PINK1的不同截短型,运用GST pull-down技术验证了PINK1与Parkin相互结合的区段为PINK1的蛋白激酶结构域.免疫细胞化学实验也证实Parkin与PINK1蛋白在细胞中存在共定位.进一步运用免疫共沉淀技术证实Parkin可减少PINK1通过泛素蛋白酶体系统(ubiquitin proteasome system,UPS)的降解,从而稳定PINK1.PINK1可增加Parkin通过UPS的降解,从而减少Parkin的水平,降低其稳定性.这些结果提示,帕金森病相关蛋白Parkin与PINK1能够直接结合,二者通过泛素蛋白酶体降解系统相互调节,可能协同作用参与了帕金森病的致病过程.  相似文献   
38.
SUMO-1共价修饰ataxin-3   总被引:3,自引:0,他引:3  
为了探讨ataxin-3的正常生理功能以及脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机理,采用酵母双杂交技术,选择polyQ扩展突变型ataxin-3全长构建诱饵质粒,筛选成人脑cDNA文库,寻找与之相互作用的蛋白质,筛选到互作蛋白smallubiquitin-likemodifier1(SUMO-1).进一步运用免疫共沉淀技术证实,SUMO-1在哺乳动物细胞中共价修饰野生型和polyQ扩展突变型ataxin-3.免疫荧光共定位实验发现,polyQ扩展突变型ataxin-3形成的核内蛋白聚合体与SUMO-1共定位.研究提示,ataxin-3的正常生理功能可能受SUMO-1的调节,SUMO-1可能参与了脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机制.  相似文献   
39.
为了深入研究Wnt信号的传导机制 ,利用GAL4酵母双杂交系统 ,以Wnt受体LRP6的胞内区为诱饵蛋白 ,筛选小鼠 11 5d胚胎cDNA文库 ,发现了一个新的LRP6相互作用蛋白 :黑色素瘤相关抗原MAAT1p15 (melanoma associatedantigenrecognizedbycytotoxicTlymphocytesp15 ) .免疫共沉淀方法证明了LRP6胞内区和MAAT1p15在哺乳动物细胞中也存在相互作用 .荧光素酶报告系统分析实验显示 ,MAAT1p15能够明显增强Wnt1和LRP6响应的下游基因的转录活性 ,提示MAAT1p15可能是LRP6的一个辅助蛋白  相似文献   
40.
The human deubiquitinases USP12 and USP46 are very closely related paralogs with critical functions as tumor suppressors. The catalytic activity of these enzymes is regulated by two cofactors: UAF1 and WDR20. USP12 and USP46 show nearly 90% amino acid sequence identity and share some cellular activities, but have also evolved non-overlapping functions. We hypothesized that, correlating with their functional divergence, the subcellular localization of USP12 and USP46 might be differentially regulated by their cofactors. We used confocal and live microscopy analyses of epitope-tagged proteins to determine the effect of UAF1 and WDR20 on the localization of USP12 and USP46. We found that WDR20 differently modulated the localization of the DUBs, promoting recruitment of USP12, but not USP46, to the plasma membrane. Using site-directed mutagenesis, we generated a large set of USP12 and WDR20 mutants to characterize in detail the mechanisms and sequence determinants that modulate the subcellular localization of the USP12/UAF1/WDR20 complex. Our data suggest that the USP12/UAF1/WDR20 complex dynamically shuttles between the plasma membrane, cytoplasm and nucleus. This shuttling involved active nuclear export mediated by the CRM1 pathway, and required a short N-terminal motif (1MEIL4) in USP12, as well as a novel nuclear export sequence (450MDGAIASGVSKFATLSLHD468) in WDR20. In conclusion, USP12 and USP46 have evolved divergently in terms of cofactor binding-regulated subcellular localization. WDR20 plays a crucial role in as a “targeting subunit” that modulates CRM1-dependent shuttling of the USP12/UAF1/WDR20 complex between the plasma membrane, cytoplasm and nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号