首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4372篇
  免费   776篇
  国内免费   398篇
  2024年   34篇
  2023年   204篇
  2022年   160篇
  2021年   281篇
  2020年   295篇
  2019年   337篇
  2018年   278篇
  2017年   272篇
  2016年   273篇
  2015年   264篇
  2014年   293篇
  2013年   258篇
  2012年   194篇
  2011年   168篇
  2010年   170篇
  2009年   221篇
  2008年   231篇
  2007年   203篇
  2006年   179篇
  2005年   147篇
  2004年   129篇
  2003年   109篇
  2002年   105篇
  2001年   104篇
  2000年   82篇
  1999年   84篇
  1998年   59篇
  1997年   43篇
  1996年   50篇
  1995年   33篇
  1994年   38篇
  1993年   28篇
  1992年   21篇
  1991年   27篇
  1990年   14篇
  1989年   17篇
  1988年   15篇
  1987年   13篇
  1986年   19篇
  1985年   14篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   13篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1958年   3篇
排序方式: 共有5546条查询结果,搜索用时 15 毫秒
41.
Luc De Meester 《Oecologia》1994,97(3):333-341
To test the hypothesis of co-adaptation of life histories and daytime vertical distribution (vertical migration behaviour) in Daphnia, life history characteristics were analysed for two positively, three negatively, and four intermediately phototactic Daphnia magna clones. Clones with different phototactic behaviour were found to have divergent life history strategies, with positively phototactic clones being good exploiters under the non-limiting conditions provided in the laboratory, i.e. low density (1 ind./1), high food concentration (6,5–7 105 Scenedesmus cells/ml, restored daily) and high temperature (20° C). They realized a high intrinsic rate of increase at a small adult body size through rapid development, at a cost of producing small neonates. Negatively and intermediately phototactic clones had larger adult body sizes, and produced larger neonates that were more starvation-resistant than those of positively phototactic clones. Selection for high intrinsic rate of increase in intermediately phototactic clones was mediated through the production of large clutches.  相似文献   
42.
Abstract Phenotypic variability of Cardamine flexuosa (Cruciferae) was examined in response to different lengths of exposure to low temperature (5°C) at the juvenile stage, and to two photoperiod regimes (8 and 16 hrs day-lengths) in the subsequent growth period. The results indicated that this species had a facultative chilling or long-day requirement for flowering. The long-day and chilling treatments both caused an earlier onset of stem internode elongation. Longer chilling treatments reduced the number of nodes and increased internode length under both long and short photoperiod regimes. Prolonged chilling treatments followed by long-day photoperiod remarkably induced more numerous basal branches and inflorescences, as a result producing more siliques. Remarkable rosette leaves Were formed at the base of the main stem when partial chilling and the short-day treatment suppressed stem internode elongation. The responses to chilling and long-day treatment closely resembled the synchronized flowering of this species in spring in the field. Delayed flowering under the short-day treatment resembled size- or age-dependent flowering in late summer to autumn in the field populations.  相似文献   
43.
Abstract Genetic diversity of Korean populations in Hosta clausa was investigated using starch gel electrophoresis. Hosta clausa is widespread, grows only along streamsides, and has both sexual and asexual reproduction. Populations of the species are small and isolated. Thirty-two percent of the loci examined were polymorphic, and mean genetic diversity within populations (Hep=0.082) was lower than mean estimates for species with very similar life history characteristics (0.131), particularly for its congener H. yingeri (0.250). The mean number of multilocus genotypes per population was 8.7, and genotypic diversity index (DG) was 0.84. Significant differences in allele frequencies among populations were found in all seven polymorphic loci (P < 0.001). About one-fifth of the total allozyme variation was among populations (GST=0.192). Indirect estimate of the number of migrants per generation (Nm=0.48, calculated from mean GST) and nine private alleles found indicate that gene movement among populations was low. The low levels of genetic diversity within populations and the relatively high levels of genetic diversity among populations suggest that strong moist habitat preferences, clonal reproduction, low level of gene flow among populations, genetic drift, and historical events may have played roles in the genetic structuring of the species.  相似文献   
44.
Abstract In the field, the population density (n) of crowded, living ramets of Salvinia molesta ranged from 2500 m ?2 in nutrient-poor water to more than 30 000 m?2 in nutrient-rich water. Biomass of living shoots (B) in some localities exceeded 600 gm?2 dry weight (150 tonnes ha?1 fresh weight) and shoots plus roots of living and floating dead material exceeded 1600 gm?2 dry weight (400 tonnes ha?1 fresh weight). The ultimate limit B= 105n0.5 suggested by previous authors was not exceeded. The highest n and smallest ramets occurred in nutrient-rich water and B was a linear function of n. Field experiments confirmed no effect of n, but a strong effect of nutrient availability, on ramet weight. In a glasshouse experiment, ramet populations did not ‘self-thin’ along the log log B-n trajectory of slope -0.5, which has been suggested for aclonal plants, but followed trajectories having slopes closer to +1.0 before halting at the ambient B-n limit. Nutrient concentrations in the plants increased during the experiment, causing ramet size to decrease and slopes of log log B-n trajectories to depart from +1.0 by amounts which reflected the degree to which nutrient concentration had changed. Under constant conditions, mean ramet size is expected to remain constant and log log B-n trajectories to travel in a straight line of slope +1.0 to the ambient B-n limit. This behaviour of salvinia, whose ramets consist of a single structural module, is contrasted with that expected of clonal plants whose ramets are made up of multiple structural modules. A logistic model explained the increases in n and biomass of living and dead ramets when ramets were assumed to have constant longevity, constant time to decay, and when both the B-n limit and size of ramets were dependent on nitrogen content of the plant. There was no indication that physiological integration within phenets halted production of new ramets when carrying capacity was reached and new ramets continued to be produced on top of older ramets. Rates of ramet mortality were equal to, and dependent on, rates of ramet natality.  相似文献   
45.
In the primordial thoracic ganglia of locust embryos, the bromodeoxiuridine (BrdU) technique for labelling proliferating cells and their progeny was combined with intracellular dye injection to investigate the origin and the clonal relationship of common inhibitory motoneurons. Common inhibitors 1 (CI1) and 3 (CI3) were found to be siblings, that is, they are produced by the division of one ganglion mother cell. This ganglion mother cell results from the first division of neuroblast 5–5, at about 30% of embryonic development. A large portion, at least, of the ganglion mother cells produced by subsequent divisions of neuroblast 5–5 give rise to interneurons with contralaterally ascending or descending axons and GABA-like immunoreactivity. Thus, CI1 and CI3 are more closely related to putative inhibitory interneurons than they are to other, that is, excitatory, motoneurons. Consistent with this, the CI somata are associated with cell bodies of putative inhibitory interneurons rather than with clusters of excitatory motoneuron somata. These results elicit speculations regarding the evolutionary origin of inhibitory motoneurons. 1994 John Wiley & Sons, Inc.  相似文献   
46.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   
47.

Aim

Understanding how species' traits and environmental contexts relate to extinction risk is a critical priority for ecology and conservation biology. This study aims to identify and explore factors related to extinction risk between herbaceous and woody angiosperms to facilitate more effective conservation and management strategies and understand the interactions between environmental threats and species' traits.

Location

China.

Taxon

Angiosperms.

Methods

We obtained a large dataset including five traits, six extrinsic variables, and 796,118 occurrence records for 14,888 Chinese angiosperms. We assessed the phylogenetic signal and used phylogenetic generalized least squares regressions to explore relationships between extinction risk, plant traits, and extrinsic variables in woody and herbaceous angiosperms. We also used phylogenetic path analysis to evaluate causal relationships among traits, climate variables, and extinction risk of different growth forms.

Results

The phylogenetic signal of extinction risk differed among woody and herbaceous species. Angiosperm extinction risk was mainly affected by growth form, altitude, mean annual temperature, normalized difference vegetation index, and precipitation change from 1901 to 2020. Woody species' extinction risk was strongly affected by height and precipitation, whereas extinction risk for herbaceous species was mainly affected by mean annual temperature rather than plant traits.

Main conclusions

Woody species were more likely to have higher extinction risks than herbaceous species under climate change and extinction threat levels varied with both plant traits and extrinsic variables. The relationships we uncovered may help identify and protect threatened plant species and the ecosystems that rely on them.  相似文献   
48.
为探究了哥王Wikstroemiaindica的叶功能性状特征及其影响因素,在海岛植被调查的基础上对了哥王叶片进行取样并测定其功能性状指标,利用变异系数法和Pearson相关性分析探讨叶功能性状之间的差异与联系,运用冗余分析研究了哥王叶功能性状对土壤因子的响应。结果表明,了哥王的叶功能性状变异系数介于9.76%~23.73%,其中叶体积变异幅度最大(23.73%),叶干物质含量变异幅度最小(9.76%),整体上了哥王叶功能性状保持相对稳定。了哥王各项叶功能性状之间具有一定的相关性,联系较密切。了哥王叶功能性状主要受土壤中有机质、全氮、碱解氮的影响,土壤中有机质、全氮、碱解氮的含量与比叶面积呈正比,与叶厚度、叶体积成反比。了哥王的叶片可以通过一定的性状变异和组合来适应外部环境的变化,以较好地适应海岛恶劣的环境。该研究结果可为了哥王野生种质资源的保护、利用以及人工栽培提供参考。  相似文献   
49.
菊花离体快速繁殖的研究   总被引:1,自引:0,他引:1  
唐巍 《生物技术》1993,3(2):18-21
用MS基本培养基附加植物生长调节剂,进行了菊花离体快速繁殖试验。以幼叶为外植体在附加不同生长素的培寿基上诱导愈伤组织后进行分化培养。结果表明,2.OppmNAA上的愈伤组织诱导率最高,0.5ppmBA上的不定芽分化率最高。用不同浓度NAA与BA的组合进行分化试验,其方差分析结果说明0.1ppmNAA+0.5ppmBA是分化培养的最佳激素组合。无根苗在MS无激素培寿基上诱导生根,28天后移栽成活率达到85%。  相似文献   
50.

Questions

Rhododendron ponticum subsp. baeticum is an invasive shrub of growing concern in continental Europe, but little is known about its impact on native plant communities. Here we ask: do environmental conditions differ between forest stands invaded by it and uninvaded stands? Do these differences correlate with R. ponticum's cover? Are these differences associated with differences in taxonomic and functional diversity of vascular plant species of the herb layer? Can these vegetation changes be explained by the sorting of certain life-history traits by R. ponticum-induced environmental changes?

Location

Several forests invaded by R. ponticum in the French Atlantic domain.

Methods

We recorded vegetation composition and a number of environmental variables in 400-m2 plots that were established in 64 paired forest stands (32 invaded vs 32 uninvaded). We compiled traits from existing databases. We computed several metrics of taxonomic and functional diversity. We compared environmental variables and diversity metrics between invaded and uninvaded stands. We used correlation and regression analyses to relate them with R. ponticum's cover. We ran RLQ and fourth-corner analyses to explore the relationships between R. ponticum invasion, environmental variables, species traits, and vegetation composition.

Results

Independent of its abundance, R. ponticum invasion was associated with lower light arrival at the forest floor and increased litter thickness. Concomitantly, species richness and diversity and trait diversity were reduced. The major driver of species assemblages was soil pH, which strongly interacted with the invasion gradient. R. ponticum did not sort species according to traits associated with shade tolerance and thick-litter tolerance. However, tree and shrub saplings were more abundant in invaded than uninvaded stands, at the expense of graminoid and fern species.

Conclusions

As R. ponticum becomes the dominant shrub, it exerts new selection forces on life-history traits of extant species, mostly via reduced light availability, increased litter thickness, and physical competition, thereby reducing taxonomic and functional diversity of the herb layer, without impeding tree and shrub self-regeneration, at least in the short term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号