首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13702篇
  免费   1256篇
  国内免费   876篇
  2024年   35篇
  2023年   262篇
  2022年   280篇
  2021年   414篇
  2020年   477篇
  2019年   731篇
  2018年   611篇
  2017年   605篇
  2016年   568篇
  2015年   534篇
  2014年   649篇
  2013年   1334篇
  2012年   407篇
  2011年   577篇
  2010年   525篇
  2009年   729篇
  2008年   815篇
  2007年   680篇
  2006年   691篇
  2005年   547篇
  2004年   572篇
  2003年   473篇
  2002年   413篇
  2001年   307篇
  2000年   312篇
  1999年   288篇
  1998年   263篇
  1997年   218篇
  1996年   215篇
  1995年   192篇
  1994年   152篇
  1993年   127篇
  1992年   127篇
  1991年   112篇
  1990年   78篇
  1989年   69篇
  1988年   57篇
  1987年   66篇
  1986年   54篇
  1985年   57篇
  1984年   44篇
  1983年   19篇
  1982年   31篇
  1981年   34篇
  1980年   22篇
  1979年   10篇
  1978年   17篇
  1977年   11篇
  1976年   9篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
451.
Molecular dynamics simulations have been carried out for simple electrolyte systems to study the electrokinetically driven osmotic flow in parallel-plate channels of widths ~10–120?nm. The results are compared with the classical theory predictions based on the solution to the Poisson–Boltzmann equation. We find that despite some of the limitations in the Poisson–Boltzmann equation, such as assumption of the Boltzmann distribution for the ions, the classical theory captures the general trend of the variations of the osmotic flow with channel width, as characterized by the mobility of the fluid in channels between ~10 and 120?nm at moderate to low ion concentration. At moderate concentration (corresponding to relatively low surface potential), the classical theory is almost quantitative. The theory and simulation show more disagreement at low concentration, primarily caused by the high surface potential where the assumption of Boltzmann distribution becomes inaccurate. We discuss the limitations of the Poisson–Boltzmann equation as applied to the nanoscale channels.  相似文献   
452.
We present the results of molecular dynamics (MD) computer simulations of rare gas diffusion through breathable nanotubes with pentagon–heptagon pair defects resulting in constrictions and knees. Diffusion involves interrupted high speed “choppy” motion with intermittent reversal in velocity direction. Single atoms exhibit a spiral-like path, in contrast to atoms traveling in groups. Considerable resistance to flow appears to reside in the upstream section of the nanotube where density gradients are small, prior to the constriction. Subsequently, considerable density gradients are present and speeds increase, becoming greatest at the tube exit. For the nanotubes examined, Kr and Xe diffusion was too hindered to provide reliable results. Diffusion of He through the nanotubes with knees occurs in a single-file fashion nearly along the center of the tube and the knee has no detectable effect on the diffusion kinetics. Transport diffusion coefficients are in the order of 10-4–10-2?cm2/s.  相似文献   
453.
Editorial     
Abstract

Grand canonical molecular dynamics (GCMD) simulations are used to study the adsorption and desorption of Lennard-Jones nitrogen in three slit pore junction models of microporous graphite. These networks consist of two narrow pores separated by a wider (cavity) pore. We report results for cases where the narrow pore has a width of only two or three molecular diameters. Using the GCMD technique, a novel freezing transition is observed which results in pore blocking in the narrow pores of the network, which are less than 1 nm wide. This freezing results from the adsorption energy barrier at the junction between the narrow and wider pores. This type of pore blocking could account for the apparent increase in pore volume with increasing temperature that has been experimentally observed in microporous graphite systems. For networks in which the narrower pores are somewhat larger, with a width of 1.28 nm, this pore blocking effect is much reduced, and adsorbate molecules enter and fill the central cavity. In such cases, however, desorption is incomplete, some residual adsorbate remaining in the central cavity even at the lowest pressures.  相似文献   
454.
455.
Nowadays heat-sensitive protein medicines are increasingly showing their importance in the treatment of various diseases. Their popularisation and application are meeting a great challenge because of their heat lability. In this study, human insulin as a heat-sensitive protein medicine and 66 amino acids derived from a Group 3 late embryogenesis abundant protein fragment as a complex bioactive protectant, were chosen to be investigated to determine whether these amino acids can be used to protect the insulin from denaturation due to drying. The experiments were carried out by using a replica exchange molecular dynamics (REMD) simulation and GROMACS software with Gromos96 (53a6) force field. The REMD results indicate that those amino acids can effectively prevent the reversal between hydrophilic and hydrophobic surface. Both the configurations and secondary structures of the protected insulin were preserved very well. The H-bonding and electrostatic interactions between the insulin and the protectant play key roles in the bioactive protection of insulin. These results agree well with the water replacement hypothesis. All the results prove that these amino acids are a perfect bioactive protectant for heat-sensitive protein medicines.  相似文献   
456.
Abstract

The structure and dynamics of phosphatidylcholine bilayers are examined by reviewing the results of several nanoseconds of molecular dynamics simulations on a number of bilayer and monolayer models. The lengths of these simulations, the longest single one of which was 2 nanoseconds, were sufficiently long to effectively sample many of the longer-scale motions governing the behaviour of biomembranes. These simulations reproduce many experimental observables well and provide a degree of resolution currently unavailable experimentally.  相似文献   
457.
Abstract

The forms and frequencies of atomic dynamics on the pico- and nanosecond timescales are accessible experimentally using incoherent neutron scattering. Molecular dynamics simulations cover the same space and time domains and neutron scattering intensities can be calculated from the simulations for direct comparison with experiment. To illustrate the complementarity of neutron scattering and molecular dynamics we examine measured and simulation-derived elastic incoherent scattering profiles from myoglobin and from the crystalline alanine dipeptide. Elastic incoherent scattering gives information on the geometry of the volume accessible to the atoms in the samples. The simulation-derived dipeptide elastic scattering profiles are in reasonable accord with experiment, deviations being due to the sampling limitations in the simulations and experimental detector normalisation procedures. The simulated dynamics is decomposed, revealing characteristic profiles due to rotational diffusional and translational vibrational motions of the methyl groups. In myoglobin, for which the timescale of the simulation matches more closely that accessible to the experiment, good agreement is seen for the elastic incoherent structure factor. This indicates that the space sampled by the hydrogen atoms in the protein on the timescale <100 ps is well represented by the simulation. Part of the helix atom fluctuations can be described in terms of rigid helix motions.  相似文献   
458.
Graphics processing unit (GPU) is becoming a powerful computational tool in science and engineering. In this paper, different from previous molecular dynamics (MD) simulation with pair potentials and many-body potentials, two MD simulation algorithms implemented on a single GPU are presented to describe a special category of many-body potentials – bond order potentials used frequently in solid covalent materials, such as the Tersoff potentials for silicon crystals. The simulation results reveal that the performance of GPU implementations is apparently superior to their CPU counterpart. Furthermore, the proposed algorithms are generalised, transferable and scalable, and can be extended to the simulations with general many-body interactions such as Stillinger–Weber potential and so on.  相似文献   
459.
The meso-scale structure of symmetric diblock copolymer under cylindrical confinement is studied by dissipative particle dynamics (DPD). The simulation results show that coiled cylindrical geometry is favored in the presence of larger cylinder radius (R/L 0>~1.5), and the number of rings depends on the cylinder radius. Because of the cylinder wall's selectivity, each block can form the central core, but only the preferential block forms the outmost layer. An approximately linear relationship exists between structure transition point, which is approximately in proportion to the 3/5 exponential of chain length of copolymer and number of layers. As the cylinder radius is decreased, a helical morphology is found. Lamellae parallel to the underside of the cylinder appear when the cylinder radius is made smaller (R/L 0 < ~1.1).  相似文献   
460.
We present a new parallelised controller for steering an arbitrary geometric region of a molecular dynamics (MD) simulation towards a desired thermodynamic and hydrodynamic state. We show that the controllers may be applied anywhere in the domain to set accurately an initial MD state, or solely at boundary regions to prescribe non-periodic boundary conditions (PBCs) in MD simulations. The mean molecular structure and velocity autocorrelation function remain unchanged (when sampled a few molecular diameters away from the constrained region) when compared with those distributions measured using PBCs. To demonstrate the capability of our new controllers, we apply them as non-PBCs in parallel to a complex MD mixing nano-channel and in a hybrid MD continuum simulation with a complex coupling region. The controller methodology is easily extendable to polyatomic MD fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号