首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13700篇
  免费   1256篇
  国内免费   876篇
  2024年   35篇
  2023年   262篇
  2022年   278篇
  2021年   414篇
  2020年   477篇
  2019年   731篇
  2018年   611篇
  2017年   605篇
  2016年   568篇
  2015年   534篇
  2014年   649篇
  2013年   1334篇
  2012年   407篇
  2011年   577篇
  2010年   525篇
  2009年   729篇
  2008年   815篇
  2007年   680篇
  2006年   691篇
  2005年   547篇
  2004年   572篇
  2003年   473篇
  2002年   413篇
  2001年   307篇
  2000年   312篇
  1999年   288篇
  1998年   263篇
  1997年   218篇
  1996年   215篇
  1995年   192篇
  1994年   152篇
  1993年   127篇
  1992年   127篇
  1991年   112篇
  1990年   78篇
  1989年   69篇
  1988年   57篇
  1987年   66篇
  1986年   54篇
  1985年   57篇
  1984年   44篇
  1983年   19篇
  1982年   31篇
  1981年   34篇
  1980年   22篇
  1979年   10篇
  1978年   17篇
  1977年   11篇
  1976年   9篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
161.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   
162.
Abstract In the field, the population density (n) of crowded, living ramets of Salvinia molesta ranged from 2500 m ?2 in nutrient-poor water to more than 30 000 m?2 in nutrient-rich water. Biomass of living shoots (B) in some localities exceeded 600 gm?2 dry weight (150 tonnes ha?1 fresh weight) and shoots plus roots of living and floating dead material exceeded 1600 gm?2 dry weight (400 tonnes ha?1 fresh weight). The ultimate limit B= 105n0.5 suggested by previous authors was not exceeded. The highest n and smallest ramets occurred in nutrient-rich water and B was a linear function of n. Field experiments confirmed no effect of n, but a strong effect of nutrient availability, on ramet weight. In a glasshouse experiment, ramet populations did not ‘self-thin’ along the log log B-n trajectory of slope -0.5, which has been suggested for aclonal plants, but followed trajectories having slopes closer to +1.0 before halting at the ambient B-n limit. Nutrient concentrations in the plants increased during the experiment, causing ramet size to decrease and slopes of log log B-n trajectories to depart from +1.0 by amounts which reflected the degree to which nutrient concentration had changed. Under constant conditions, mean ramet size is expected to remain constant and log log B-n trajectories to travel in a straight line of slope +1.0 to the ambient B-n limit. This behaviour of salvinia, whose ramets consist of a single structural module, is contrasted with that expected of clonal plants whose ramets are made up of multiple structural modules. A logistic model explained the increases in n and biomass of living and dead ramets when ramets were assumed to have constant longevity, constant time to decay, and when both the B-n limit and size of ramets were dependent on nitrogen content of the plant. There was no indication that physiological integration within phenets halted production of new ramets when carrying capacity was reached and new ramets continued to be produced on top of older ramets. Rates of ramet mortality were equal to, and dependent on, rates of ramet natality.  相似文献   
163.
In the primordial thoracic ganglia of locust embryos, the bromodeoxiuridine (BrdU) technique for labelling proliferating cells and their progeny was combined with intracellular dye injection to investigate the origin and the clonal relationship of common inhibitory motoneurons. Common inhibitors 1 (CI1) and 3 (CI3) were found to be siblings, that is, they are produced by the division of one ganglion mother cell. This ganglion mother cell results from the first division of neuroblast 5–5, at about 30% of embryonic development. A large portion, at least, of the ganglion mother cells produced by subsequent divisions of neuroblast 5–5 give rise to interneurons with contralaterally ascending or descending axons and GABA-like immunoreactivity. Thus, CI1 and CI3 are more closely related to putative inhibitory interneurons than they are to other, that is, excitatory, motoneurons. Consistent with this, the CI somata are associated with cell bodies of putative inhibitory interneurons rather than with clusters of excitatory motoneuron somata. These results elicit speculations regarding the evolutionary origin of inhibitory motoneurons. 1994 John Wiley & Sons, Inc.  相似文献   
164.
Abstract. We describe a model of heath vegetation, in which species were classified into five functional groups based on characteristics of their propagule pools, post-fire growth, timing and mode of reproduction and competitive status. The model assumes no recruitment without fire and a simple competitive hierarchy based on vertical stature. A critical feature of the model is an initial post-fire window of 5–6 yr in which competition from overstorey species on understorey species is reduced. Understorey functional groups differ in their ability to exploit this window. In the field, we tested five predictions derived from the model: (a) overall species richness of understorey varies inversely with overstorey density as a result of a trend in richness of woody species, but not in herbaceous species; (b) where an overstorey was present in the previous fire interval, post-fire population density is reduced in a functional group of understorey serotinous resprouting shrubs, but not in a group of understorey obligate-seeding shrubs with soil seed banks; (c) in understorey serotinous resprouting shrubs, post-fire regrowth in resprouting individuals is adversely affected by the presence of an overstorey in the preceding fire interval; (d) in understorey serotinous resprouting shrubs, levels of pre-fire propagules are lower in the presence of an overstorey, reducing the density of post-fire recruits; and (e) in understorey serotinous resprouting shrubs, recruitment relative to the pre-fire population is unaffected by overstorey species within the window of reduced competition. Of these, three tests (a,b,d) supported the model, one (e) may support the model, but the results were inconclusive and one (c) did not support the model. Limitations and further applications of the model are discussed. Our results suggest that maintenance of high densities of overstorey populations is in conflict with conservation of some understorey species. Models of the type we propose will help identify and resolve such conflicts and promote the judicious use of fire to maintain full species diversity of plant communities.  相似文献   
165.
Seasonal changes in the phytoplankton community of a small tropical reservoir were monitored over a four year period comprising of an initial two seasonal cycles during which the water column stratified strongly for extended periods each year, and two further seasonal cycles after installation of a mechanical aeration system to induce artificial destratification. In the unmanaged reservoir, the concentration of chlorophyll a at 0.5 m reached maximum values (on one occasion > 90 mg m−3) when the water column was stratified and the epilimnion was very shallow (ca 2 m depth). The hypolimnion at this time was anoxic (less than 2% oxygen saturation) and had a high concentration of bacteriochlorophyll (100–200 mg m−3). The phytoplankton community of the unmanaged reservoir was generally dominated by cyanobacteria (Cylindrospermopsis raciborskii, Anabaena tenericaulis) during the warmer months of the year (November–March) (but replaced by chlorophyta, dinophyceae and euglenophyceae after periods of intense rain) and by bacillariophyceae (Synedra ulna var. chaseana, S. tenera) during the cooler, dry months. In the artificially destratified reservoir (8 h aeration day−1), the phytoplankton community was largely dominated by diatoms except after depletion of the silica content of the water column which caused diatoms to be replaced by cyanobacteria (dominated by A. tenericaulis) and a range of chlorophytes. The changing pattern of stratification and circulation of the water column in the unmanaged reservoir caused repeated disruption of the established phytoplankton assemblage with peaks of high biomass associated with transient cyanobacterial blooms. Continuous aeration and the consequent increase in the ratio mixed: euphotic depth provided conditions suitable for dominance of the phytoplankton by diatoms, as long as silica was available, and resulted in average chlorophyll levels higher than in the unmanaged reservoir (120 ± 10 v. 64 ± 9 mg m−2). Hierarchical fusion analysis based on the biomass of species differentiated the phytoplankton samples into cluster groups that could be related primarily to stratification or mixing of the water column.  相似文献   
166.
Tyrosyl ring motions in alpha-lytic protease were investigated by solid-state deuterium nuclear magnetic resonance (NMR) spectroscopy in lyophilized enzyme powder, in powder suspended in organic solvents, and in aqueous crystals. Ring flipping rates were determined by examining deuterium quadrupole echo line shapes. Of the four Tyr residues in the enzyme, one was flipping at the slow (< or =10(3) s(-1)) and one at the fast (> or =10(7) s(-1)) exchange limit of the line shape experiment in all the environments tested. Flipping rates of the remaining two Tyr residues depended markedly on the solvent, with the lowest flipping rates (< or =10(3) s(-1) for both residues) observed in the enzyme powder, whether dry or suspended in hydrophobic tert-butyl methyl ether. In hydrophilic dioxane and acetonitrile, the mobility of these residues increased to 10(4) and 10(5) s(-1). The latter rate rose further to 10(6) s(-1) in the hydrated hydrophilic solvents and to > or =10(7) s(-1) in aqueous crystals. The deuterium spectrum of native alpha-lytic protease was compared with that of the enzyme whose active center was covalently modified with an inhibitor, which binds next to Tyr-123, constraining its ring. This experiment revealed that water addition to acetonitrile specifically increased the flipping rate of this active center residue. Librational motions ("wobbling"), estimated by their effect on spin-lattice relaxation times, were slowest in the anhydrous solvents, intermediate in the hydrated solvents, and fastest in the aqueous crystals. Thus, alpha-lytic protease is more rigid in organic solvents than in water, as judged by mobility of its tyrosyl residues. Water stripping by hydrophilic solvents did not increase enzyme rigidity, nor were there clear correlations between mobility and either enzymatic activity or solvent dielectric constant.  相似文献   
167.
Through simple model analysis, the mass action kinetic model for lipolytic enzymes in biphasic aqueous-organic systems can be simplified using the quasi-steady state assumption (or the quasi-equilibrium state assumption) for the adsorbed enzyme E* or the enzyme-substrate complex E*S. Some parameter combinations leading to the above assumptions are derived confirmed by full numerical integration of the whole enzymatic process. The results may be classified into three categories: (1) the quasi-equilibrium state assumption for E*, (2) the quasi-steady state assumption for E*, and (3) the quasi-steady state assumption for E*S. Further simplification for both E* and E*S is also discussed. (c) 1993 Wiley & Sons, Inc.  相似文献   
168.
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.  相似文献   
169.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
170.
菊花离体快速繁殖的研究   总被引:1,自引:0,他引:1  
唐巍 《生物技术》1993,3(2):18-21
用MS基本培养基附加植物生长调节剂,进行了菊花离体快速繁殖试验。以幼叶为外植体在附加不同生长素的培寿基上诱导愈伤组织后进行分化培养。结果表明,2.OppmNAA上的愈伤组织诱导率最高,0.5ppmBA上的不定芽分化率最高。用不同浓度NAA与BA的组合进行分化试验,其方差分析结果说明0.1ppmNAA+0.5ppmBA是分化培养的最佳激素组合。无根苗在MS无激素培寿基上诱导生根,28天后移栽成活率达到85%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号