首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3737篇
  免费   486篇
  国内免费   176篇
  4399篇
  2024年   48篇
  2023年   222篇
  2022年   150篇
  2021年   204篇
  2020年   199篇
  2019年   250篇
  2018年   216篇
  2017年   174篇
  2016年   139篇
  2015年   182篇
  2014年   196篇
  2013年   271篇
  2012年   169篇
  2011年   126篇
  2010年   113篇
  2009年   106篇
  2008年   146篇
  2007年   153篇
  2006年   133篇
  2005年   107篇
  2004年   130篇
  2003年   100篇
  2002年   100篇
  2001年   90篇
  2000年   73篇
  1999年   71篇
  1998年   54篇
  1997年   39篇
  1996年   59篇
  1995年   43篇
  1994年   40篇
  1993年   41篇
  1992年   29篇
  1991年   37篇
  1990年   17篇
  1989年   19篇
  1988年   19篇
  1987年   16篇
  1986年   14篇
  1985年   9篇
  1984年   12篇
  1983年   9篇
  1982年   16篇
  1981年   12篇
  1980年   18篇
  1979年   6篇
  1978年   10篇
  1977年   5篇
  1976年   3篇
  1972年   1篇
排序方式: 共有4399条查询结果,搜索用时 15 毫秒
61.
Our aim in this study was to investigate the effect of aging on the capacity of HDLs to promote reverse cholesterol transport. HDLs were isolated from plasma of young (Y-HDL) and elderly (E-HDL) subjects. HDL-mediated cholesterol efflux was studied using THP-1 and J774 macrophages. Our results show that E-HDLs present a lower capacity to promote cholesterol efflux than Y-HDLs (41.7 +/- 1.4% vs. 49.0 +/- 2.2%, respectively; P = 0.013). Reduction in the HDL-mediated cholesterol efflux capacity with aging was more significant with HDL(3) than HDL(2) (Y-HDL(3), 57.3 +/- 1% vs. E-HDL(3), 50.9 +/- 2%; P = 0.012). Moreover, our results show that ABCA1-mediated cholesterol efflux is the more affected pathway in terms of cholesterol-removing capacity. Interestingly, the composition and structure of HDL revealed a reduction in the phosphatidylcholine-sphingomyelin ratio (E-HDL, 32.7 +/- 2.7 vs. Y-HDL, 40.0 +/- 1.9; P = 0.029) and in the phospholipidic layer membrane fluidity in E-HDL compared with Y-HDL as well as an alteration in the apolipoprotein A-I structure and charge. In conclusion, our results shown that E-HDLs present a reduced capacity to promote cholesterol efflux, principally through the ABCA1 pathway, and this may explain the increase of the incidence of cardiovascular diseases observed during aging.  相似文献   
62.
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging‐related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro‐apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.  相似文献   
63.
Reduced signalling through the insulin/insulin-like growth factor-1 signalling (IIS) pathway is a highly conserved lifespan determinant in model organisms. The precise mechanism underlying the effects of the IIS on lifespan and health is currently unclear, although cellular stress resistance may be important. We have previously demonstrated that mice globally lacking insulin receptor substrate 1 (Irs1−/−) are long-lived and enjoy a greater period of their life free from age-related pathology compared with wild-type (WT) controls. In this study, we show that primary dermal fibroblasts and primary myoblasts derived from Irs1−/− mice are no more resistant to a range of oxidant and nonoxidant chemical stressors than cells derived from WT mice.  相似文献   
64.
The study of aging is critical for a better understanding of many age-related diseases. The free radical theory of aging, one of the prominent aging hypotheses, holds that during aging, increasing reactive oxygen species in mitochondria causes mutations in the mitochondrial DNA and damages mitochondrial components, resulting in senescence. Understanding a mitochondrial gene expression profile and its relationship to mitochondrial function becomes an important step in understanding aging. The objective of the present study was to determine mRNA expression of mitochondrial-encoded genes in brain slices from C57BL6 mice at four ages (2, 12, 18, and 24 months) and to determine how these altered mitochondrial genes influence age-related changes, including oxidative damage and cytochrome c in apoptosis. Using northern blot analysis, in situ hybridization, and immunofluorescence analyses, we analyzed changes in the expression of mitochondrial RNA encoding the mitochondrial genes, oxidative damage marker, 8-hydroxyguanosine (8-OHG), and cytochrome c in brain slices from the cortex of C57BL6 mice at each of the four ages. Our northern blot analysis revealed an increased expression of mitochondrial-encoded genes in complexes I, III, IV, and V of the respiratory chain in 12- and 18-month-old C57BL6 mice compared to 2-month-old mice, suggesting a compensatory mechanism that allows the production of proteins involved in the electron transport chain. In contrast to the up-regulation of mitochondrial genes in 12- and 18-month-old C57BL6 mice, mRNA expression in 24-month-old C57BL6 mice was decreased, suggesting that compensation maintained by the up-regulated genes cannot be sustained and that the down-regulation of expression results in the later stage of aging. Our in situ hybridization analyses of mitochondrial genes from the hippocampus and the cortex revealed that mitochondrial genes were over-expressed, suggesting that these brain areas are critical for mitochondrial functions. Our immunofluorescence analysis of 8-OHG and cytochrome c revealed increased 8-OHG and cytochrome c in 12-month-old C57BL6 mice, suggesting that age-related mitochondrial oxidative damage and apoptosis are associated with mitochondrial dysfunction. Our double-labeling analysis of in situ hybridization of ATPase 6 and our immunofluorescence analysis of 8-OHG suggest that specific neuronal populations undergo oxidative damage. Further, double-labeling analysis of in situ hybridization of ATPase 6 and immunofluorescence analysis of cytochrome c suggest cytochrome c release is related to mitochondrial dysfunction in the aging C57BL6 mouse brain. This study also suggests that these mitochondrial gene expression changes may relate to the role of mitochondrial dysfunction, oxidative damage, and cytochrome c in aging and in age-related diseases such as Alzheimer's disease and Parkinson's disease.  相似文献   
65.
In order to assess the importance of sexual and asexual reproduction during the life history of Scirpus mariqueter, its reproductive and growth characters were concurrently examined along an elevational gradient (from low elevation to high elevation). The proportions of flowering shoot and inflorescence mass, seed : flower ratio and seed weight were used to quantify the investment in sexual reproduction. The proportions of current-year shoot and rhizome mass were used to quantify the investment in asexual reproduction, and the proportion of corm mass was used for growth, respectively. It was found that vegetative propagation predominated at low elevation, whereas sexual reproduction predominated at high elevation; and that sexual reproduction increased with declining asexual reproduction along the gradient. The results suggest that asexual reproduction is relatively favored in the early life stage, whereas sexual reproduction is favored when the population becomes mature and aged, probably because of the functional differentiation between the two reproductive types. Sexual productive characters (i.e. the proportions of flowering shoot and inflorescence mass) were negatively correlated to both growth and asexual reproductive characters along the gradient, indicating there might exist some trade-offs among growth, sexual and asexual reproduction during the life history. However, no obvious pattern was found between asexual reproductive characters and growth characters along the elevational gradient, possibly because of the varied relationships between them at different life stages. The variations in sexual and asexual reproduction in the species and the relationship between them are thought to be of great significance for local population growth, species persistence and evolution.  相似文献   
66.
67.
68.
On Ordos plateau, a semi-arid, desertified area in China, sand burial is a common stress factor for plants. The extent to which sand burial occurs is heterogeneous and unpredictable in space and in time. Therefore, clonal fragments (i.e., interconnected ramets of a clonal plant) often experience partial sand burial, with some ramets buried in sand while the rest may remain unburied. It was hypothesized that clonal fragments are able to benefit from clonal integration, in case they experience partial sand burial. A pot experiment was conducted with Potentilla anserina, a stoloniferous herb often found on Ordos plateau. We used clonal fragments consisting of four interconnected ramets. In the experiment, the two proximal (older) ramets were unburied while the two distal (younger) ramets were either unburied (control) or buried with a 2, 4 or 6 cm deep layer of sand (burial treatments). The stolon connection between the proximal and the distal ramets was either severed or left intact. Stolon severing dramatically decreased the survival of buried ramets. Stolon severing and sand burial had significant effects on plant performance in terms of biomass production, number of leaves and leaf area. A cost–benefit analysis based on performance measures shows that the proximal ramets supported their connected distal ramets and did not incur any cost from this resource export. These results suggest that clonal integration, which is one of the functionally most important consequences of clonal growth, contributes significantly to our test species' capacity to withstand partial sand burial on Ordos plateau, a semi-arid and desertified area of China.  相似文献   
69.
成年去胸腺(ATx)大鼠和老年大鼠肝微粒体混合功能氧化酶(MFO,包括细胞色素P450、氨基比林-N-脱甲基酶)的活力比成年对照大鼠的低,且降低幅度雄性明显大于雌性。雄性ATx大鼠和老年大鼠血浆睾酮(T)水平降低,雌二醇(E_2)水平增高,E_2/T比值明显增高;雌性ATx大鼠和老年大鼠血浆E_2和T水平均降低,E_2/T比值无明显变化。给雄性ATx大鼠皮下注射丙酸睾丸素可使其肝微粒体MFO活力恢复。提示胸腺对肝脏MFO的影响可能是通过性激素介导的。  相似文献   
70.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号